Ralstonia solanacearum needs motility for invasive virulence on tomato

被引:252
作者
Tans-Kersten, J [1 ]
Huang, HY [1 ]
Allen, C [1 ]
机构
[1] Univ Wisconsin, Dept Plant Pathol, Madison, WI 53706 USA
关键词
D O I
10.1128/JB.183.12.3597-3605.2001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found that R. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria, As is typical for flagellins, the predicted FliC protein ha;l well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lacking fliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphA cassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.
引用
收藏
页码:3597 / 3605
页数:9
相关论文
共 60 条
[1]   FLAGELLIN GENE-TRANSCRIPTION IN BORDETELLA-BRONCHISEPTICA IS REGULATED BY THE BVGAS VIRULENCE CONTROL-SYSTEM [J].
AKERLEY, BJ ;
MILLER, JF .
JOURNAL OF BACTERIOLOGY, 1993, 175 (11) :3468-3479
[2]   ECTOPIC EXPRESSION OF THE FLAGELLAR REGULON ALTERS DEVELOPMENT OF THE BORDETELLA HOST INTERACTION [J].
AKERLEY, BJ ;
COTTER, PA ;
MILLER, JF .
CELL, 1995, 80 (04) :611-620
[3]   CLONING OF GENES AFFECTING POLYGALACTURONASE PRODUCTION IN PSEUDOMONAS-SOLANACEARUM [J].
ALLEN, C ;
HUANG, Y ;
SEQUEIRA, L .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1991, 4 (02) :147-154
[4]   A regulatory locus, pehSR, controls polygalacturonase production and other virulence functions in Ralstonia solanacearum [J].
Allen, C ;
Gay, J ;
SimonBuela, L .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1997, 10 (09) :1054-1064
[5]   COMPETITIVE ADVANTAGE PROVIDED BY BACTERIAL MOTILITY IN THE FORMATION OF NODULES BY RHIZOBIUM-MELILOTI [J].
AMES, P ;
BERGMAN, K .
JOURNAL OF BACTERIOLOGY, 1981, 148 (02) :728-729
[6]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[7]   ROLE OF MOTILITY IN APPLE BLOSSOM INFECTION BY ERWINIA-AMYLOVORA AND STUDIES OF FIRE BLIGHT CONTROL WITH ATTRACTANT AND REPELLENT COMPOUNDS [J].
BAYOT, RG ;
RIES, SM .
PHYTOPATHOLOGY, 1986, 76 (04) :441-445
[8]  
BOUCHER CA, 1985, J GEN MICROBIOL, V131, P2449
[9]   COLONIZATION OF PEA (PISUM-SATIVUM L) TAPROOTS BY PSEUDOMONAS-FLUORESCENS - EFFECT OF SOIL-TEMPERATURE AND BACTERIAL MOTILITY [J].
BOWERS, JH ;
PARKE, JL .
SOIL BIOLOGY & BIOCHEMISTRY, 1993, 25 (12) :1693-1701
[10]   FLAGELLA-SPECIFIC BACTERIOPHAGES OF AGROBACTERIUM-TUMEFACIENS - DEMONSTRATION OF VIRULENCE OF NONMOTILE MUTANTS [J].
BRADLEY, DE ;
DOUGLAS, CJ ;
PESCHON, J .
CANADIAN JOURNAL OF MICROBIOLOGY, 1984, 30 (05) :676-681