Visual target tracking via weighted non-sparse representation and online metric learning

被引:0
作者
Duan, Jingdi [1 ]
Fan, Baojie [2 ]
Cong, Yang [3 ]
机构
[1] Neusoft Corp, Shenyang 110179, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210046, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO) | 2013年
关键词
non-sparse representation; online metric learning; bi-linear graph; target tracking; OBJECT TRACKING; ROBUST;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose online metric learning tracking method that consider visual tracking as a similarity measurement problem, and incorporates adaptive metric learning and generative histogram model based on non-sparse linear representation into the target tracking framework. We propose a generative histogram model based on non-sparse linear representation, which make full use of the non-sparse coefficients to discriminate between the target and the background. The similarity metric is adaptively learned online to maximize the margin of the distance between the foreground target and background. A bi-linear graph is defined accordingly to propagate the label of each sample. The model can also self-update using the more confident new samples. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
引用
收藏
页码:2691 / 2695
页数:5
相关论文
共 33 条
  • [21] Incremental learning for robust visual tracking
    Ross, David A.
    Lim, Jongwoo
    Lin, Ruei-Sung
    Yang, Ming-Hsuan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) : 125 - 141
  • [22] PROST: Parallel Robust Online Simple Tracking
    Santner, Jakob
    Leistner, Christian
    Saffari, Amir
    Pock, Thomas
    Bischof, Horst
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 723 - 730
  • [23] Shi QF, 2011, PROC CVPR IEEE, P553, DOI 10.1109/CVPR.2011.5995556
  • [24] Online Distance Metric Learning for Object Tracking
    Tsagkatakis, Grigorios
    Savakis, Andreas
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (12) : 1810 - 1821
  • [25] Online Object Tracking With Sparse Prototypes
    Wang, Dong
    Lu, Huchuan
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 314 - 325
  • [26] Wang Dong, CVPR2013
  • [27] Wang S, 2011, IEEE I CONF COMP VIS, P1323, DOI 10.1109/ICCV.2011.6126385
  • [28] Wang XY, 2010, LECT NOTES COMPUT SC, V6313, P200
  • [29] Robust Face Recognition via Sparse Representation
    Wright, John
    Yang, Allen Y.
    Ganesh, Arvind
    Sastry, S. Shankar
    Ma, Yi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) : 210 - 227
  • [30] Zhang KH, 2012, LECT NOTES COMPUT SC, V7574, P864, DOI 10.1007/978-3-642-33712-3_62