Visual target tracking via weighted non-sparse representation and online metric learning

被引:0
作者
Duan, Jingdi [1 ]
Fan, Baojie [2 ]
Cong, Yang [3 ]
机构
[1] Neusoft Corp, Shenyang 110179, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210046, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO) | 2013年
关键词
non-sparse representation; online metric learning; bi-linear graph; target tracking; OBJECT TRACKING; ROBUST;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose online metric learning tracking method that consider visual tracking as a similarity measurement problem, and incorporates adaptive metric learning and generative histogram model based on non-sparse linear representation into the target tracking framework. We propose a generative histogram model based on non-sparse linear representation, which make full use of the non-sparse coefficients to discriminate between the target and the background. The similarity metric is adaptively learned online to maximize the margin of the distance between the foreground target and background. A bi-linear graph is defined accordingly to propagate the label of each sample. The model can also self-update using the more confident new samples. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
引用
收藏
页码:2691 / 2695
页数:5
相关论文
共 33 条
  • [1] Adam A., 2006, IEEE C COMPUTER VISI, V1, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
  • [2] [Anonymous], 2010, ECCV
  • [3] [Anonymous], 2012, PROC CVPR IEEE
  • [4] Ensemble tracking
    Avidan, Shai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) : 261 - 271
  • [5] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [6] EigenTracking: Robust matching and tracking of articulated objects using a view-based representation
    Black, MJ
    Jepson, AD
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 26 (01) : 63 - 84
  • [7] Chechik G., 2009, P ADV NEUR INF PROC, P306
  • [8] Cong Y, 2012, IEEE IMAGE PROC, P417, DOI 10.1109/ICIP.2012.6466884
  • [9] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [10] Grabner H., 2006, P 2006 IEEE COMP SOC, V1, P260