Quandles at finite temperatures III

被引:5
作者
Bojarczuk, J
Lopes, P
机构
[1] Univ Estado Rio de Janeiro, Inst Matemat & Estatist, BR-20550013 Rio De Janeiro, Brazil
[2] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[3] Inst Super Tecn, Ctr Matemat & Aplicacoes, P-1049001 Lisbon, Portugal
关键词
quandles; colorings; 2-dimensional braids; ribbon knots; 2-twist-spun knots;
D O I
10.1142/S021821650500383X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We resume work on telling embeddings of codimension two apart by counting colorings of the corresponding diagrams by given quandles. Previously, we illustrated the efficiency of this approach on classical knots. In the present paper we apply it to knotted surfaces. We recover work of Kamada in telling ribbon knots apart and we distinguish all elements of a class of twist-spun torus knots.
引用
收藏
页码:275 / 373
页数:99
相关论文
共 19 条
[1]  
Carter J.Scott., 1998, KNOTTED SURFACES THE
[2]   Quandle cohomology and state-sum invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Langford, L ;
Saito, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3947-3989
[3]   Computations of quandle cocycle invariants of knotted curves and surfaces [J].
Carter, JS ;
Jelsovsky, D ;
Kamada, S ;
Saito, M .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :36-94
[4]   Quandles at finite temperatures II [J].
Dionísio, FM ;
Lopes, P .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (08) :1041-1092
[5]   Trunks and classifying spaces [J].
Fenn, R ;
Rourke, C ;
Sanderson, B .
APPLIED CATEGORICAL STRUCTURES, 1995, 3 (04) :321-356
[6]  
Fenn R., 1992, J KNOT THEOR RAMIF, V1, P343
[7]  
FENN R, UNPUB JAMES BUNDLES
[8]  
Fox R. H., 1962, Topology of 3-Manifolds, P120
[9]   A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE [J].
JOYCE, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) :37-65
[10]  
Kamada S, 1998, MICH MATH J, V45, P189