Convergence and Complexity Analysis of a Levenberg-Marquardt Algorithm for Inverse Problems

被引:57
作者
Bergou, El Houcine [1 ,2 ]
Diouane, Youssef [3 ]
Kungurtsev, Vyacheslav [4 ]
机构
[1] Univ Paris Saclay, MaIAGE, INRAE, F-78350 Jouy En Josas, France
[2] KAUST, Thuwal, Saudi Arabia
[3] Univ Toulouse, ISAE SUPAERO, F-31055 Toulouse 4, France
[4] Czech Tech Univ, Fac Elect Engn, Dept Comp Sci, Prague, Czech Republic
关键词
Inverse problems; Levenberg-Marquardt method; Worst-case complexity bound; Global and local convergence; EQUATIONS;
D O I
10.1007/s10957-020-01666-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.
引用
收藏
页码:927 / 944
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 2000, Springer Series in Operations Research
[2]   Levenberg-Marquardt Methods Based on Probabilistic Gradient Models and Inexact Subproblem Solution, with Application to Data Assimilation [J].
Bergou, E. ;
Gratton, S. ;
Vicente, L. N. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01) :924-951
[3]  
Conn A. R., 2000, TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857
[4]   Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions [J].
Dan, H ;
Yamashita, N ;
Fukushima, M .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04) :605-626
[5]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[6]   A family of Newton methods for nonsmooth constrained systems with nonisolated solutions [J].
Facchinei, Francisco ;
Fischer, Andreas ;
Herrich, Markus .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2013, 77 (03) :433-443
[7]   Convergence rate of the trust region method for nonlinear equations under local error bound condition [J].
Fan, Jinyan .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 34 (02) :215-227
[8]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[9]   On the inexactness level of robust Levenberg-Marquardt methods [J].
Fischer, A. ;
Shukla, P. K. ;
Wang, M. .
OPTIMIZATION, 2010, 59 (02) :273-287
[10]   RANK-DEFICIENT NONLINEAR LEAST SQUARES PROBLEMS AND SUBSET SELECTION [J].
Ipsen, I. C. F. ;
Kelley, C. T. ;
Pope, S. R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :1244-1266