Jump inequalities for translation-invariant operators of Radon type on Zd

被引:19
作者
Mirek, Mariusz [1 ,2 ]
Stein, Elias M. [3 ]
Zorin-Kranich, Pavel [4 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Uniwersytet Wroclawski, Inst Matemat, Pl Grwnwaldzki 2-4, PL-50384 Wroclaw, Poland
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Discrete Radon transform; Jump inequality; DISCRETE ANALOGS; HARMONIC-ANALYSIS; ERGODIC THEOREM; SUBSETS;
D O I
10.1016/j.aim.2020.107065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove strong jump inequalities for a large class of operators of Radon type in the discrete and ergodic theoretical settings. These inequalities are the r = 2 endpoints of the r-variational estimates studied in [14]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:57
相关论文
empty
未找到相关数据