Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals

被引:128
作者
Chen, Haiyang [1 ]
Wang, Yan-Dong [1 ]
Nie, Zhihua [2 ]
Li, Runguang [1 ]
Cong, Daoyong [1 ]
Liu, Wenjun [3 ]
Ye, Feng [4 ]
Liu, Yuzi [5 ]
Cao, Peiyu [1 ]
Tian, Fuyang [6 ]
Shen, Xi [7 ]
Yu, Richeng [7 ]
Vitos, Levente [8 ,9 ]
Zhang, Minghe [1 ]
Li, Shilei [1 ]
Zhang, Xiaoyi [3 ]
Zheng, Hong [10 ]
Mitchell, J. F. [10 ]
Ren, Yang [3 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing, Peoples R China
[3] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
[4] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[6] Univ Sci & Technol Beijing, Inst Appl Phys, Beijing, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Lab Adv Mat & Electron Microscopy, Beijing, Peoples R China
[8] Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, Stockholm, Sweden
[9] Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, Budapest, Hungary
[10] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
基金
匈牙利科学研究基金会; 美国国家科学基金会; 瑞典研究理事会;
关键词
SHAPE-MEMORY BEHAVIOR; OMEGA-PHASE; POTENTIAL MODEL; STRESS; ALLOY; TRANSFORMATION; APPROXIMATION; EXAMPLE;
D O I
10.1038/s41563-020-0645-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Superelasticity associated with the martensitic transformation has found a broad range of engineering applications(1,2). However, the intrinsic hysteresis(3) and temperature sensitivity(4) of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials. NiCoFeGa single crystals exhibit large non-hysteretic superelasticity over broad temperature and composition ranges. It is attributed to the continuous phase transition with applied stress, which is related to the fluctuation of entangled ordered and disordered crystal structures.
引用
收藏
页码:712 / +
页数:13
相关论文
共 35 条
[1]  
Andrews Thomas., 1869, PHILOS T ROYAL SOC L, P575, DOI [10.1098/rstl.1869.0021, DOI 10.1098/RSTL.1869.0021]
[2]   Recent progress in relaxor ferroelectrics with perovskite structure [J].
Bokov, AA ;
Ye, ZG .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (01) :31-52
[3]   Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α′-Thermoelastic Martensitic Transformations [J].
Chumlyakov, Yu. I. ;
Kireeva, I. V. ;
Kretinina, I. V. ;
Keinikh, K. S. ;
Kuts, O. A. ;
Kirillov, V. A. ;
Karaman, I. ;
Maier, H. .
RUSSIAN PHYSICS JOURNAL, 2013, 56 (08) :920-929
[4]   Relaxing with relaxors: a review of relaxor ferroelectrics [J].
Cowley, R. A. ;
Gvasaliya, S. N. ;
Lushnikov, S. G. ;
Roessli, B. ;
Rotaru, G. M. .
ADVANCES IN PHYSICS, 2011, 60 (02) :229-327
[5]   OMEGA PHASE TRANSFORMATION IN TITANIUM ALLOYS AS AN EXAMPLE OF DISPLACEMENT CONTROLLED REACTIONS [J].
DEFONTAINE, D ;
PATON, NE ;
WILLIAMS, JC .
ACTA METALLURGICA, 1971, 19 (11) :1153-+
[6]   Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J].
Devaraj, A. ;
Nag, S. ;
Srinivasan, R. ;
Williams, R. E. A. ;
Banerjee, S. ;
Banerjee, R. ;
Fraser, H. L. .
ACTA MATERIALIA, 2012, 60 (02) :596-609
[7]  
Fujimoto M., 2005, The Physics of Structural Phase Transitions
[8]  
Greaves GN, 2011, NAT MATER, V10, P823, DOI [10.1038/NMAT3134, 10.1038/nmat3134]
[9]   COHERENT-POTENTIAL APPROXIMATION FOR A "NONOVERLAPPING-MUFFIN-TIN-POTENTIAL MODEL OF RANDOM SUBSTITUTIONAL ALLOYS [J].
GYORFFY, BL .
PHYSICAL REVIEW B, 1972, 5 (06) :2382-&
[10]   A review of shape memory alloy research, applications and opportunities [J].
Jani, Jaronie Mohd ;
Leary, Martin ;
Subic, Aleksandar ;
Gibson, Mark A. .
MATERIALS & DESIGN, 2014, 56 :1078-1113