HELICON: Orchestrating low-latent & load-balanced Virtual Network Functions

被引:4
作者
Bunyakitanon, Monchai [1 ]
Vasilakos, Xenofon [1 ]
Nejabati, Reza [1 ]
Simeonidou, Dimitra [1 ]
机构
[1] Univ Bristol, Dept Elect & X0026 Elect Engn, Smart Internet Lab, Bristol BS8 1UB, Clifton, England
来源
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022) | 2022年
关键词
Network function virtualization; Software defined networking; 5G mobile communication; Machine learning;
D O I
10.1109/ICC45855.2022.9839199
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
HELICON is a novel hierarchical Reinforcement Learning (RL) approach for orchestrating the dynamic placement of Virtual Network Functions (VNFs) in Cloud and Edge 5G environments. It proves capable of addressing an NP-Hard decision-making problem with adopted RL while augmenting the current state of the art in orchestrators with a previously unexplored lightweight distributed and hierarchical RL approach. HELICON can run as a fully autonomous solution or complement orchestrators, thus bridging a significant gap in existing orchestrators, which generally lack intelligent and dynamic adaptation capabilities. Finally, our performance evaluation results over an actual 5G city testbed and use case validate that HELICON outperforms traditional policy-based Open Source MANO and other heuristic policies concerning single or multi-objective optimisation goals. What is more, HELICON's performance meets with that of node-specific custom supervised learning models, whereas it clearly outperforms supervised learning under dynamic conditions.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 18 条
[1]   QoS provisioning dynamic connection-admission control for multimedia wireless networks using a Hopfield neural network [J].
Ahn, CW ;
Ramakrishna, RS .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2004, 53 (01) :106-117
[2]  
[Anonymous], 2005, AAAI
[3]   Orchestrating Virtualized Network Functions [J].
Bari, Md. Faizul ;
Chowdhury, Shihabur Rahman ;
Ahmed, Reaz ;
Boutaba, Raouf ;
Muniz Bandeira Duarte, Otto Carlos .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2016, 13 (04) :725-739
[4]   Multi-Objective Deep Reinforcement Learning Assisted Service Function Chains Placement [J].
Bi, Yu ;
Meixner, Carlos Colman ;
Bunyakitanon, Monchai ;
Vasilakos, Xenofon ;
Nejabati, Reza ;
Simeonidou, Dimitra .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (04) :4134-4150
[5]   A comprehensive survey on machine learning for networking: evolution, applications and research opportunities [J].
Boutaba, Raouf ;
Salahuddin, Mohammad A. ;
Limam, Noura ;
Ayoubi, Sara ;
Shahriar, Nashid ;
Estrada-Solano, Felipe ;
Caicedo, Oscar M. .
JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2018, 9 (01)
[6]   AUTO-3P: An autonomous VNF performance prediction & placement framework based on machine learning [J].
Bunyakitanon, Monchai ;
da Silva, Aloizio Pereira ;
Vasilakos, Xenofon ;
Nejabati, Reza ;
Simeonidou, Dimitra .
COMPUTER NETWORKS, 2020, 181
[7]   End-to-End Performance-Based Autonomous VNF Placement With Adopted Reinforcement Learning [J].
Bunyakitanon, Monchai ;
Vasilakos, Xenofon ;
Nejabati, Reza ;
Simeonidou, Dimitra .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (02) :534-547
[8]  
Carpio F, 2017, IEEE ICC
[9]   AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization [J].
Chen, Li ;
Lingys, Justinas ;
Chen, Kai ;
Liu, Feng .
PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, :191-205
[10]  
Li D., 2018, 2018 27th International Conference on Computer Communication and Networks (ICCCN), P1, DOI DOI 10.1109/ICCCN.2018.8487449