Interactive Model Predictive Control for Robot Navigation in Dense Crowds

被引:28
作者
Chen, Yujing [1 ]
Zhao, Fenghua [1 ]
Lou, Yunjiang [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mechatron Engn & Automat, Shenzhen Engn Lab Med Intelligent Cordless Ultras, HIT Campus, Shenzhen 518055, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2022年 / 52卷 / 04期
关键词
Robots; Navigation; Collision avoidance; Robot kinematics; Trajectory; Predictive models; Real-time systems; Dense crowds; interaction; model predictive control (MPC); pedestrian intention; robot navigation; trajectory planning; OBSTACLE AVOIDANCE; MOBILE;
D O I
10.1109/TSMC.2020.3048964
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robot navigating in dense crowds should react to the motion of nearby pedestrians. However, it could lead to unsafe, inefficient, and illegible robot motions. This article presents an anticipative framework that predicts pedestrians intentions and their interactions in crowds, and the robot accordingly seeks an optimal trajectory based on the prediction. We propose: 1) a pedestrian motion model considering both pedestrian intention and interaction and 2) a multiobjective cost function considering real-time calculation, collision avoidance, quality of motion, and progress toward the goal along the trajectory. An interactive model predictive control framework is formulated to optimize the robot trajectory. The effectiveness of the proposed approach is evaluated in multiple simulation scenarios and a real experiment. It is demonstrated that the proposed approach generates safe, efficient, and legible robot behaviors in real time in dense crowds.
引用
收藏
页码:2289 / 2301
页数:13
相关论文
共 45 条
[1]   Social LSTM: Human Trajectory Prediction in Crowded Spaces [J].
Alahi, Alexandre ;
Goel, Kratarth ;
Ramanathan, Vignesh ;
Robicquet, Alexandre ;
Li Fei-Fei ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :961-971
[2]  
Bera A, 2016, IEEE INT CONF ROBOT, P5528, DOI 10.1109/ICRA.2016.7487768
[3]   THE VECTOR FIELD HISTOGRAM - FAST OBSTACLE AVOIDANCE FOR MOBILE ROBOTS [J].
BORENSTEIN, J ;
KOREN, Y .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (03) :278-288
[4]  
Chen YF, 2017, IEEE INT C INT ROBOT, P1343, DOI 10.1109/IROS.2017.8202312
[5]   Real-time nonparametric reactive navigation of mobile robots in dynamic environments [J].
Choi, Sungjoon ;
Kim, Eunwoo ;
Lee, Kyungjae ;
Oh, Songhwai .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 91 :11-24
[6]  
Curtis S., 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), P128, DOI 10.1109/ICCVW.2011.6130234
[7]   Robot Motion Planning in Dynamic, Uncertain Environments [J].
Du Toit, Noel E. ;
Burdick, Joel W. .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) :101-115
[8]   Getting Robots Unfrozen and Unlost in Dense Pedestrian Crowds [J].
Fan, Tingxiang ;
Cheng, Xinjing ;
Pan, Jia ;
Long, Pinxin ;
Liu, Wenxi ;
Yang, Ruigang ;
Manocha, Dinesh .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) :1178-1185
[9]  
Farina F, 2016, IEEE DECIS CONTR P, P3548, DOI 10.1109/CDC.2016.7798802
[10]  
Ferrer G, 2014, IEEE INT C INT ROBOT, P1730, DOI 10.1109/IROS.2014.6942788