Consistent forcing scheme in the cascaded lattice Boltzmann method

被引:77
|
作者
Fei, Linlin [1 ]
Luo, Kai Hong [1 ,2 ]
机构
[1] Tsinghua Univ, Ctr Combust Energy, Key Lab Thermal Sci & Power Engn, Minist Educ,Dept Thermal Engn, Beijing 100084, Peoples R China
[2] UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
MULTIPHASE FLOW; MODEL; DISPERSION; EQUATION;
D O I
10.1103/PhysRevE.96.053307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Enthalpy-based cascaded lattice Boltzmann method for conjugate heat transfer
    Liu, Xiang
    Tong, Zi-Xiang
    He, Ya-Ling
    Du, Shen
    Li, Meng-Jie
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [32] Extended lattice Boltzmann scheme for droplet combustion
    Ashna, Mostafa
    Rahimian, Mohammad Hassan
    Fakhari, Abbas
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [33] Rectangular lattice Boltzmann method
    Zhou, Jian Guo
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [34] A LATTICE BOLTZMANN METHOD BASED NUMERICAL SCHEME FOR MICROCHANNEL FLOWS
    Fu, S. C.
    Leung, W. W. F.
    So, R. M. C.
    IMECE 2008: NEW DEVELOPMENTS IN SIMULATION METHODS AND SOFTWARE FOR ENGINEERING APPLICATIONS, VOL 14, 2009, : 111 - 121
  • [35] Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method
    Zhang, Liangqi
    Yang, Shiliang
    Zeng, Zhong
    Chew, Jia Wei
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [36] Cascaded lattice Boltzmann method based on central moments for axisymmetric thermal flows including swirling effects
    Hajabdollahi, Farzaneh
    Premnath, Kannan N.
    Welch, Samuel W. J.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 128 : 999 - 1016
  • [37] Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method
    Liu, Qing
    Feng, Xiang-Bo
    ENTROPY, 2020, 22 (01) : 41
  • [38] Cascaded lattice Boltzmann method for incompressible thermal flows with heat sources and general thermal boundary conditions
    Fei, Linlin
    Luo, Kai Hong
    COMPUTERS & FLUIDS, 2018, 165 : 89 - 95
  • [39] Extension of the Improved Bounce-Back Scheme for Electrokinetic Flow in the Lattice Boltzmann Method
    Chen, Qing
    Zhou, Hongping
    Jiang, Xuesong
    Xu, Linyun
    Li, Qing
    Ru, Yu
    ENTROPY, 2015, 17 (11): : 7406 - 7419
  • [40] Dual Grid Lattice Boltzmann method for multiphase flows
    Rosales, C.
    Whyte, D. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) : 1068 - 1084