Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots

被引:8
作者
Saleem, Y. [1 ]
Najera Baldo, L. [1 ,2 ]
Delgado, A. [1 ]
Szulakowska, L. [1 ]
Hawrylak, P. [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON, Canada
[2] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, Baja California, Mexico
关键词
graphene quantum dots; graphene; tight binding; zigzag edge; armchair edge; DIRAC FERMIONS; SPECTRA; PHASE;
D O I
10.1088/1361-648X/ab0b31
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We determine here the evolution of the bandgap energy with size in graphene quantum dots (GQDs). We find oscillatory behaviour of the bandgap and explain its origin in terms of armchair and zigzag edges. The electronic energy spectra of GQDs are computed using both the tight binding model and ab initio density functional methods. The results of the tight binding model are analyzed by dividing zigzag graphene quantum dots into concentric rings. For each ring, the energy spectra, the wave functions and the bandgap are obtained analytically. The effect of inter-ring tunneling on the energy gap is determined. The growth of zigzag terminated GQD into armchair GQD is shown to be associated with the addition of a one-dimensional Lieb lattice of carbon atoms with a shell of energy levels in the middle of the energy gap of the inner zigzag terminated GQD. This introduces a different structure of the energy levels at the bottom of the conduction and top of the valence band in zigzag and armchair GQD which manifests itself in the oscillation of the energy gap with increasing size. The evolution of the bandgap with the number of carbon atoms is compared with the notion of confined Dirac Fermions and tested against ab initio calculations of Kohn-Sham and TD-DFT energy gaps.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J].
Andrade, Xavier ;
Strubbe, David ;
De Giovannini, Umberto ;
Hjorth Larsen, Ask ;
Oliveira, Micael J. T. ;
Alberdi-Rodriguez, Joseba ;
Varas, Alejandro ;
Theophilou, Iris ;
Helbig, Nicole ;
Verstraete, Matthieu J. ;
Stella, Lorenzo ;
Nogueira, Fernando ;
Aspuru-Guzik, Alan ;
Castro, Alberto ;
Marques, Miguel A. L. ;
Rubio, Angel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) :31371-31396
[2]  
[Anonymous], 2006, TIME DEPENDENT DENSI
[3]   Propagators for the time-dependent Kohn-Sham equations [J].
Castro, A ;
Marques, MAL ;
Rubio, A .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) :3425-3433
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors [J].
Diez-Perez, Ismael ;
Li, Zhihai ;
Hihath, Joshua ;
Li, Jinghong ;
Zhang, Chengyi ;
Yang, Xiaomei ;
Zang, Ling ;
Dai, Yijun ;
Feng, Xinliang ;
Muellen, Klaus ;
Tao, Nongjian .
NATURE COMMUNICATIONS, 2010, 1
[6]  
EHRENFREUND P, 1992, ASTRON ASTROPHYS, V259, P257
[7]  
EZAWA M, 2008, PHYS REV B, V77
[8]  
FERNANDEZROSSIER J, 2007, PHYS REV LETT, V99, DOI DOI 10.1021/NL072548A
[9]   An on/off Berry phase switch in circular graphene resonators [J].
Ghahari, Fereshte ;
Walkup, Daniel ;
Gutierrez, Christopher ;
Rodriguez-Nieva, Joaquin F. ;
Zhao, Yue ;
Wyrick, Jonathan ;
Natterer, Fabian D. ;
Cullen, William G. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Zhitenev, Nikolai B. ;
Stroscio, Joseph A. .
SCIENCE, 2017, 356 (6340) :845-U133
[10]   Hexagonal graphene quantum dots [J].
Ghosh, S. ;
Schwingenschlogl, U. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (01)