Design of biodegradable, implantable devices towards clinical translation

被引:589
作者
Li, Chunmei [1 ]
Guo, Chengchen [1 ]
Fitzpatrick, Vincent [1 ]
Ibrahim, Ahmed [2 ,3 ]
Zwierstra, Myrthe Jasmijn [2 ,3 ]
Hanna, Philip [4 ]
Lechtig, Aron [4 ]
Nazarian, Ara [4 ,5 ]
Lin, Samuel J. [2 ,3 ]
Kaplan, David L. [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Plast Surg, Boston, MA 02115 USA
[3] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Otolaryngol, Boston, MA 02115 USA
[4] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Adv Orthopaed Studies, Boston, MA 02115 USA
[5] Yerevan State Med Univ, Dept Orthopaed Surg, Yerevan, Armenia
关键词
FOREIGN-BODY REACTION; IN-VIVO DEGRADATION; SILK-BASED BIOMATERIALS; L-LACTIDE PLLA; EXTRACELLULAR-MATRIX; MACROPHAGE PHENOTYPE; TISSUE-RESPONSE; BIOLOGIC SCAFFOLDS; SILICON NANOMEMBRANES; REGENERATIVE MEDICINE;
D O I
10.1038/s41578-019-0150-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Clinical outcomes with implantable and degradable devices largely depend on host response. This Review surveys material options and degradation mechanisms relevant to host responses to biodegradable devices, examines clinical translation of leading biodegradable materials and proposes updated material-design strategies to improve device performance. Biodegradable materials, including natural and synthetic polymers and hydrolyzable metals, constitute the main components of temporary, implantable medical devices. Besides the intrinsic properties of the materials, the most critical factor determining the successful clinical outcome of implantable and degradable devices is the host response, particularly the immune response, which largely depends on the material features and degradation mechanisms. In this Review, we first survey the state of the art in terms of materials options for use in biodegradable medical devices, focusing on degradation mechanisms and their control. In particular, we highlight silk, which is emerging as an important polymer, owing to its mechanical robustness, bioactive component sequestration, degradability without problematic metabolic products and biocompatibility. We then discuss the host response to these biodegradable materials in terms of dynamic tissue-implant interfaces. Next, we examine the clinical translation of three leading biodegradable material systems - natural and synthetic biodegradable polymers and biodegradable metals - and the related challenges in the context of orthopaedic fixation devices, cardiovascular stents and biodegradable electronic devices. Looking to the future, we propose updated material design strategies to improve the clinical outcomes for these biodegradable medical devices.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 241 条
[71]   Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics [J].
Hjort, H. ;
Mathisen, T. ;
Alves, A. ;
Clermont, G. ;
Boutrand, J. P. .
HERNIA, 2012, 16 (02) :191-197
[72]   The Biomedical Use of Silk: Past, Present, Future [J].
Holland, Chris ;
Numata, Keiji ;
Rnjak-Kovacina, Jelena ;
Seib, F. Philipp .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (01)
[73]   In vitro degradation of silk fibroin [J].
Horan, RL ;
Antle, K ;
Collette, AL ;
Huang, YZ ;
Huang, J ;
Moreau, JE ;
Volloch, V ;
Kaplan, DL ;
Altman, GH .
BIOMATERIALS, 2005, 26 (17) :3385-3393
[74]   Silkworm silk-based materials and devices generated using bio-nanotechnology [J].
Huang, Wenwen ;
Ling, Shengjie ;
Li, Chunmei ;
Omenetto, Fiorenzo G. ;
Kaplan, David L. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (17) :6486-6504
[75]   Biodegradable Materials for Multilayer Transient Printed Circuit Boards [J].
Huang, Xian ;
Liu, Yuhao ;
Hwang, Suk-Won ;
Kang, Seung-Kyun ;
Patnaik, Dwipayan ;
Cortes, Jonathan Fajardo ;
Rogers, John A. .
ADVANCED MATERIALS, 2014, 26 (43) :7371-7377
[76]   Translating materials design to the clinic [J].
Hubbell, Jeffrey A. ;
Langer, Robert .
NATURE MATERIALS, 2013, 12 (11) :963-966
[77]   Matrix-bound nanovesicles within ECM bioscaffolds [J].
Huleihel, Luai ;
Hussey, George S. ;
Naranjo, Juan Diego ;
Zhang, Li ;
Dziki, Jenna L. ;
Turner, Neill J. ;
Stolz, Donna B. ;
Badylak, Stephen F. .
SCIENCE ADVANCES, 2016, 2 (06)
[78]   High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers [J].
Hwang, Suk-Won ;
Song, Jun-Kyul ;
Huang, Xian ;
Cheng, Huanyu ;
Kang, Seung-Kyun ;
Kim, Bong Hoon ;
Kim, Jae-Hwan ;
Yu, Sooyoun ;
Huang, Yonggang ;
Rogers, John A. .
ADVANCED MATERIALS, 2014, 26 (23) :3905-3911
[79]   25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices [J].
Hwang, Suk-Won ;
Park, Gayoung ;
Cheng, Huanyu ;
Song, Jun-Kyul ;
Kang, Seung-Kyun ;
Yin, Lan ;
Kim, Jae-Hwan ;
Omenetto, Fiorenzo G. ;
Huang, Yonggang ;
Lee, Kyung-Mi ;
Rogers, John A. .
ADVANCED MATERIALS, 2014, 26 (13) :1992-2000
[80]   Materials for Bioresorbable Radio Frequency Electronics [J].
Hwang, Suk-Won ;
Huang, Xian ;
Seo, Jung-Hun ;
Song, Jun-Kyul ;
Kim, Stanley ;
Hage-Ali, Sami ;
Chung, Hyun-Joong ;
Tao, Hu ;
Omenetto, Fiorenzo G. ;
Ma, Zhenqiang ;
Rogers, John A. .
ADVANCED MATERIALS, 2013, 25 (26) :3526-3531