Kusuoka-Stroock gradient bounds for the solution of the filtering equation

被引:4
作者
Crisan, Dan [1 ]
Litterer, Christian [2 ]
Lyons, Terry [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[3] Univ Oxford, Oxford Man Inst Quantitat Finance, Oxford OX2 6ED, England
基金
英国工程与自然科学研究理事会;
关键词
Stochastic partial differential equation; Filtering; Randomly perturbed semigroup; Gradient bounds; DIFFERENTIAL-EQUATIONS; SIGNALS; NOISE;
D O I
10.1016/j.jfa.2014.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sharp gradient bounds for perturbed diffusion semigroups. In contrast with existing results, the perturbation is here random and the bounds obtained are pathwise. Our approach builds on the classical work of Kusuoka and Stroock [13,14,16,17], and extends their program developed for the heat semi-group to solutions of stochastic partial differential equations. The work is motivated by and applied to nonlinear filtering. The analysis allows us to derive pathwise gradient bounds for the un-normalised conditional distribution of a partially observed signal. It uses a pathwise representation of the perturbed semigroup following Ocone [22]. The estimates we derive have sharp small time asymptotics. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1928 / 1971
页数:44
相关论文
共 23 条
[1]  
[Anonymous], 2010, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], N HOLLAND MATH LIB
[3]  
BAIN A., 2008, STOCH MOD APPL PROBA, V60
[4]   CONDITIONAL DIFFUSIONS .1. PARTIAL HYPOELLIPTICITY [J].
BISMUT, JM ;
MICHEL, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 44 (02) :174-211
[5]   On a robust version of the integral representation formula of nonlinear filtering [J].
Clark, JMC ;
Crisan, D .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) :43-56
[6]   ROBUST FILTERING: CORRELATED NOISE AND MULTIDIMENSIONAL OBSERVATION [J].
Crisan, D. ;
Diehl, J. ;
Friz, P. K. ;
Oberhauser, H. .
ANNALS OF APPLIED PROBABILITY, 2013, 23 (05) :2139-2160
[7]  
Crisan D., 2013, LECT NOTES MATH
[8]   Non-linear rough heat equations [J].
Deya, A. ;
Gubinelli, M. ;
Tindel, S. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (1-2) :97-147
[9]   A Levy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations [J].
Diehl, Joscha ;
Oberhauser, Harald ;
Riedel, Sebastian .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (01) :161-181
[10]   LIKELIHOOD FUNCTIONS FOR STOCHASTIC SIGNALS IN WHITE NOISE [J].
DUNCAN, TE .
INFORMATION AND CONTROL, 1970, 16 (04) :303-&