Reconstruction of helices from their orthogonal projection

被引:5
作者
Cordier, Frederic [1 ,2 ]
Melkemi, Mahmoud [1 ]
Seo, Hyewon [2 ]
机构
[1] Univ Haute Alsace, LMIA, EA 3993, 12 Rue Freres Lumiere, F-68093 Mulhouse, France
[2] Univ Strasbourg, ICube, UMR CNRS 7357, BP 10413,Bd Sebastien Brant, F-67412 Illkirch Graffenstaden, France
关键词
Helix; 3D reconstruction; TOTAL LEAST-SQUARES; LINE-DRAWINGS; SKETCHES; CURVES;
D O I
10.1016/j.cagd.2016.04.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a method for modeling helices from planar curves. Given a polygonal curve in the (x, y) plane, the method computes a helix such that its orthogonal projection onto the (x, y) plane fits the polygonal curve. The helix curve is first sampled and the transformation matrix that best aligns points of the sampled helix to those of the polygonal curve is calculated. This transformation matrix is then used to estimate the parameters of the helix whose projection fits the polygonal curve. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 18 条
[1]  
[Anonymous], THESIS
[2]   Three-dimensional object recovery from two-dimensional images: A new approach [J].
Brown, EW ;
Wang, P .
INTELLIGENT ROBOTS AND COMPUTER VISION XV: ALGORITHMS, TECHNIQUES, ACTIVE VISION, AND MATERIALS HANDLING, 1996, 2904 :138-147
[3]   Modeling piecewise helix curves from 2D sketches [J].
Cherin, Nicolas ;
Cordier, Frederic ;
Melkemi, Mahmoud .
COMPUTER-AIDED DESIGN, 2014, 46 :258-262
[4]   Algorithms for finding the axis of a helix: Fast rotational and parametric least-squares methods [J].
Christopher, NA ;
Swanson, R ;
Baldwin, TO .
COMPUTERS & CHEMISTRY, 1996, 20 (03) :339-345
[5]   Inferring mirror symmetric 3D shapes from sketches [J].
Cordier, Frederic ;
Seo, Hyewon ;
Melkemi, Mahmoud ;
Sapidis, Nickolas S. .
COMPUTER-AIDED DESIGN, 2013, 45 (02) :301-311
[6]   Floating tangents for approximating spatial curves with G1 piecewise helices [J].
Derouet-Jourdan, Alexandre ;
Bertails-Descoubes, Florence ;
Thollot, Joelle .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (05) :490-520
[7]   HELFIT: Helix fitting by a total least squares method [J].
Enkhbayar, Purevjav ;
Damdinsuren, Sodov ;
Osaki, Mitsuru ;
Matsushima, Norio .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (04) :307-310
[8]  
Goriely Alain, 2009, Int J Bioinform Res Appl, V5, P118, DOI 10.1504/IJBRA.2009.024032
[9]   Robust and accurate vectorization of line drawings [J].
Hilaire, X ;
Tombre, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (06) :890-904
[10]   Convergence properties of the Nelder-Mead simplex method in low dimensions [J].
Lagarias, JC ;
Reeds, JA ;
Wright, MH ;
Wright, PE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :112-147