Local asymptotic normality in a stationary model for spatial extremes

被引:2
作者
Falk, Michael [1 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
关键词
Extreme value analysis; Spatial extremes; Multivariate exceedances; Multivariate extreme value distribution; Multivariate generalized Pareto distribution; Local asymptotic normality; LAN; Regular estimator sequence; Asymptotic efficiency;
D O I
10.1016/j.jmva.2010.07.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
De Haan and Pereira (2006) [6] provided models for spatial extremes in the case of stationarity, which depend on just one parameter beta > 0 measuring tail dependence, and they proposed different estimators for this parameter. We supplement this framework by establishing local asymptotic normality (LAN) of a corresponding point process of exceedances above a high multivariate threshold. Standard arguments from LAN theory then provide the asymptotic minimum variance within the class of regular estimators of beta. It turns out that the relative frequency of exceedances is a regular estimator sequence with asymptotic minimum variance, if the underlying observations follow a multivariate extreme value distribution or a multivariate generalized Pareto distribution. 0 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 60
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1993, COURSE POINT PROCESS
[2]  
[Anonymous], 1998, ASYMPTOTIC STAT, DOI DOI 10.1017/CBO9780511802256
[3]  
[Anonymous], EXTREME VALUE THEORY
[4]  
[Anonymous], 1986, SPRINGER SERIES STAT
[5]  
[Anonymous], 2007, STATISCAL ANAL EXTRE
[6]  
[Anonymous], 2004, Statistics of extremes: theory and applications
[7]  
[Anonymous], 1985, DEGRUYTER STUDIES MA
[8]  
[Anonymous], 1994, LAWS SMALL NUMBERS E
[9]   ALMOST SURE CONTINUITY OF STABLE MOVING AVERAGE PROCESSES WITH INDEX LESS THAN ONE [J].
BALKEMA, AA ;
DEHAAN, L .
ANNALS OF PROBABILITY, 1988, 16 (01) :333-343
[10]   Spatial extremes: Models for the stationary case [J].
De Haan, L ;
Pereira, TT .
ANNALS OF STATISTICS, 2006, 34 (01) :146-168