Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites

被引:80
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Zhuang, Xiaoying [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thong Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thong Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Continuum Mech, D-30167 Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Multi-scale modeling; Uncertainty quantification; Polymeric nano-composites(PNCs); Heat conductivity; Stochastic modeling; SENSITIVITY-ANALYSIS; CARBON NANOTUBES; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; PHASE-TRANSITIONS; FINITE-ELEMENT; PREDICTIONS; COMPOSITES; GRAPHENE;
D O I
10.1016/j.mechmat.2019.103280
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a stochastic multi-scale method to quantify the most significant input parameters influencing the heat conductivity of polymeric nano-composites (PNCs) with clay reinforcement. Therefore, a surrogate based global sensitivity analysis is coupled with a hierarchical multi-scale method employing computational homogenization. The effect of the conductivity of the fibers and the matrix, the Kapitza resistance, volume fraction and aspect ratio on the 'macroscopic' conductivity of the composite is systematically studied. We show that all selected surrogate models yield consistently the conclusions that the most influential input parameters are the aspect ratio followed by the volume fraction. The Kapitza Resistance has no significant effect on the thermal conductivity of the PNCs. The most accurate surrogate model in terms of the R-2 value is the moving least square (MLS).
引用
收藏
页数:13
相关论文
共 65 条
[1]   A TEST OF GOODNESS OF FIT [J].
ANDERSON, TW ;
DARLING, DA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1954, 49 (268) :765-769
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 2008, GLOBAL SENSITIVITY A, DOI DOI 10.1002/9780470725184
[4]  
Das KK, 2008, INDIAN J MED RES, V128, P412
[5]   Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites [J].
Deng, Fei ;
Zheng, Quan-Shui ;
Wang, Li-Feng ;
Nan, Ce-Wen .
APPLIED PHYSICS LETTERS, 2007, 90 (02)
[6]   Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites [J].
Ding, W ;
Eitan, A ;
Fisher, FT ;
Chen, X ;
Dikin, DA ;
Andrews, R ;
Brinson, LC ;
Schadler, LS ;
Ruoff, RS .
NANO LETTERS, 2003, 3 (11) :1593-1597
[7]   Calculated Thermal Properties of Single-Walled Carbon Nanotube Suspensions [J].
Duong, Hai M. ;
Papavassiliou, Dimitrios V. ;
Mullen, Kieran J. ;
Wardle, Brian L. ;
Maruyama, Shigeo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (50) :19860-19865
[8]   Effect of carbon nanotubes on phase transitions of nematic liquid crystals [J].
Duran, H ;
Gazdecki, B ;
Yamashita, A ;
Kyu, T .
LIQUID CRYSTALS, 2005, 32 (07) :815-821
[9]   pSPARQL: A Querying Language for Probabilistic RDF Data [J].
Fang, Hong .
COMPLEXITY, 2019,
[10]   Energy Dissipation in Graphene Field-Effect Transistors [J].
Freitag, Marcus ;
Steiner, Mathias ;
Martin, Yves ;
Perebeinos, Vasili ;
Chen, Zhihong ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (05) :1883-1888