Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites

被引:64
|
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Zhuang, Xiaoying [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thong Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thong Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Continuum Mech, D-30167 Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Multi-scale modeling; Uncertainty quantification; Polymeric nano-composites(PNCs); Heat conductivity; Stochastic modeling; SENSITIVITY-ANALYSIS; CARBON NANOTUBES; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; PHASE-TRANSITIONS; FINITE-ELEMENT; PREDICTIONS; COMPOSITES; GRAPHENE;
D O I
10.1016/j.mechmat.2019.103280
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a stochastic multi-scale method to quantify the most significant input parameters influencing the heat conductivity of polymeric nano-composites (PNCs) with clay reinforcement. Therefore, a surrogate based global sensitivity analysis is coupled with a hierarchical multi-scale method employing computational homogenization. The effect of the conductivity of the fibers and the matrix, the Kapitza resistance, volume fraction and aspect ratio on the 'macroscopic' conductivity of the composite is systematically studied. We show that all selected surrogate models yield consistently the conclusions that the most influential input parameters are the aspect ratio followed by the volume fraction. The Kapitza Resistance has no significant effect on the thermal conductivity of the PNCs. The most accurate surrogate model in terms of the R-2 value is the moving least square (MLS).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multiscale modeling of thermal conductivity of carbon nanotube epoxy nanocomposites
    Vahedi, Ali
    Lahidjani, Mohammad Homayoune Sadr
    Shakhesi, Saeed
    PHYSICA B-CONDENSED MATTER, 2018, 550 : 39 - 46
  • [2] A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms
    Liu, Bokai
    Nam Vu-Bac
    Rabczuk, Timon
    COMPOSITE STRUCTURES, 2021, 273
  • [3] Multiscale modeling of damage progression in nylon 6/clay nanocomposites
    Song, Shaoning
    Chen, Yu
    Su, Zhoucheng
    Quan, Chenggen
    Tan, Vincent B. C.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 100 : 189 - 197
  • [4] A review on modeling of the thermal conductivity of polymeric nanocomposites
    Nejad, Sh. Jafari
    E-POLYMERS, 2012,
  • [5] Stochastic Multiscale Modeling of Electrical Conductivity of Carbon Nanotube Polymer Nanocomposites: An Interpretable Machine Learning Approach
    Elaskalany, Mostafa
    Behdinan, Kamran
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (23)
  • [6] Modeling of thermomechanical properties of polymeric hybrid nanocomposites
    Kothari, Rohit
    Kundalwal, Shailesh I.
    Sahu, Santosh K.
    Ray, M. C.
    POLYMER COMPOSITES, 2018, 39 (11) : 4148 - 4164
  • [7] Multiscale modeling of moisture diffusion in polymer/clay nanocomposites
    Makhloufi, Ali
    Gueribiz, Djelloul
    Jacquemin, Frederic
    Freour, Silvain
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2023, 42 (21-22) : 1154 - 1166
  • [8] Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphene
    Doagou-Rad, S.
    Jensen, J. S.
    Islam, A.
    Mishnaevsky, Leon, Jr.
    COMPOSITE STRUCTURES, 2019, 217 : 27 - 36
  • [9] Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites
    Clancy, T. C.
    Frankland, S. J. V.
    Hinkley, J. A.
    Gates, T. S.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) : 1555 - 1560
  • [10] Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites
    Mortazavi, Bohayra
    Hassouna, Fatima
    Laachachi, Abdelghani
    Rajabpour, Ali
    Ahzi, Said
    Chapron, David
    Toniazzo, Valerie
    Ruch, David
    THERMOCHIMICA ACTA, 2013, 552 : 106 - 113