AN ELLIPTIC BOUNDARY VALUE PROBLEM WITH FRACTIONAL NONLINEARITY

被引:33
作者
Abatangelo, Nicola [1 ]
Cozzi, Matteo [2 ]
机构
[1] Goethe Univ Frankfurt Main, Inst Math, Robert Mayer Str 10, D-60325 Frankfurt, Germany
[2] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Saldini 50, I-20133 Milan, Italy
关键词
Dirichlet problem; operators of mixed order; comparison principles; fixed-point arguments; large solutions; BLOW-UP SOLUTIONS; DIRICHLET; EQUATIONS;
D O I
10.1137/20M1342641
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence and uniqueness of solutions to second-order elliptic boundary value problems containing a power nonlinearity applied to a fractional Laplacian. We detect the critical power separating the existence from the nonexistence regimes. For the existence results, we make use of a particular class of weighted Sobolev spaces to compensate for boundary singularities which are naturally built in the problem.
引用
收藏
页码:3577 / 3601
页数:25
相关论文
共 31 条
[1]  
Abatangelo N., 2019, SPRINGER INDAM SER, V33, P1
[2]   POSITIVE POWERS OF THE LAPLACIAN IN THE HALF-SPACE UNDER DIRICHLET BOUNDARY CONDITIONS [J].
Abatangelo, Nicola ;
Dipierro, Serena ;
Fall, Mouhamed Moustapha ;
Jarohs, Sven ;
Saldana, Alberto .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1205-1235
[3]   Very large solutions for the fractional Laplacian: Towards a fractional Keller-Osserman condition [J].
Abatangelo, Nicola .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (04) :383-405
[4]   LARGE S-HARMONIC FUNCTIONS AND BOUNDARY BLOW-UP SOLUTIONS FOR THE FRACTIONAL LAPLACIAN [J].
Abatangelo, Nicola .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) :5555-5607
[5]  
[Anonymous], 1975, PURE APPL MATH
[6]  
Applebaum D, 2009, NOTICES AM MATH SOC, V51, P1336
[7]   THE DIRICHLET PROBLEM FOR NONLOCAL ELLIPTIC OPERATORS WITH C0,α EXTERIOR DATA [J].
Audrito, Alessandro ;
Ros-Oton, Xavier .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) :4455-4470
[8]   On the Dirichlet problem for second-order elliptic integro-differential equations [J].
Barles, G. ;
Chasseigne, E. ;
Imbert, C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :213-246
[9]  
BENTH F. E., 2001, FIN STOCH, V5, P447
[10]  
BIAGI S., 2020, MIXED LOCAL NONLOCAL