Emerging Swarm Intelligence Algorithms and Their Applications in Antenna Design: The GWO, WOA, and SSA Optimizers

被引:21
作者
Boursianis, Achilles D. [1 ]
Papadopoulou, Maria S. [1 ]
Salucci, Marco [2 ]
Polo, Alessandro [2 ]
Sarigiannidis, Panagiotis [3 ]
Psannis, Konstantinos [4 ]
Mirjalili, Seyedali [5 ,6 ]
Koulouridis, Stavros [7 ]
Goudos, Sotirios K. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Phys, ELEDIA AUTH, Thessaloniki 54124, Greece
[2] Univ Trento, ELEDIA Res Ctr, I-38123 Trento, Italy
[3] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani 50150, Greece
[4] Univ Macedonia, Sch Informat Sci, Dept Appl Informat, Thessaloniki 54636, Greece
[5] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australia
[6] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
[7] Univ Patras, Elect & Comp Engn Dept, Patras 26504, Greece
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 18期
关键词
antenna design; aperture-coupled antenna; meta-heuristics; nature-inspired algorithms; optimization technique; swarm intelligence; grey wolf optimizer; whale optimization algorithm; salp swarm algorithm; GREY WOLF OPTIMIZER; DIFFERENTIAL EVOLUTION; PATCH ANTENNA; GENETIC ALGORITHMS; COMPUTATIONAL INTELLIGENCE; GLOBAL OPTIMIZATION; PATTERN SYNTHESIS; ARRAY; 5G; BINARY;
D O I
10.3390/app11188330
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Swarm Intelligence (SI) Algorithms imitate the collective behavior of various swarms or groups in nature. In this work, three representative examples of SI algorithms have been selected and thoroughly described, namely the Grey Wolf Optimizer (GWO), the Whale Optimization Algorithm (WOA), and the Salp Swarm Algorithm (SSA). Firstly, the selected SI algorithms are reviewed in the literature, specifically for optimization problems in antenna design. Secondly, a comparative study is performed against widely known test functions. Thirdly, such SI algorithms are applied to the synthesis of linear antenna arrays for optimizing the peak sidelobe level (pSLL). Numerical tests show that the WOA outperforms the GWO and the SSA algorithms, as well as the well-known Particle Swarm Optimizer (PSO), in terms of average ranking. Finally, the WOA is exploited for solving a more computational complex problem concerned with the synthesis of an dual-band aperture-coupled E-shaped antenna operating in the 5G frequency bands.
引用
收藏
页数:27
相关论文
共 100 条
[1]  
Abdel-Basset M., 2018, COMPUTATIONAL INTELL, P185
[2]   Antenna Designs for CubeSats: A Review [J].
Abulgasem, Suhila ;
Tubbal, Faisel ;
Raad, Raad ;
Theoharis, Panagiotis Ioannis ;
Lu, Sining ;
Iranmanesh, Saeid .
IEEE ACCESS, 2021, 9 :45289-45324
[3]  
Aliakbari H., 2016, EUROPEAN C ANTENNAS, P1, DOI 10.1109/EuCAP.2016.7481318
[4]   Genetic algorithms in the design and optimization of antenna array patterns [J].
Ares-Pena, FJ ;
Rodriguez-Gonzalez, JA ;
Villanueva-Lopez, E ;
Rengarajan, SR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (03) :506-510
[5]   Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition [J].
Atashpaz-Gargari, Esmaeil ;
Lucas, Caro .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :4661-4667
[6]   4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications [J].
Ban, Yong-Ling ;
Li, Chuan ;
Sim, Chow-Yen-Desmond ;
Wu, Gang ;
Wong, Kin-Lu .
IEEE ACCESS, 2016, 4 :2981-2988
[7]   Minimum sidelobe levels for linear arrays [J].
Bevelacqua, Peter J. ;
Balanis, Constantine A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (12) :3442-3449
[8]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80
[9]   Particle swarm optimization versus genetic algorithms for phased array synthesis [J].
Boeringer, DW ;
Werner, DH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (03) :771-779
[10]  
Boursianis A.D., 2019, P 2019 13 EUROPEAN C, P1