Electronic structure and low-temperature thermoelectric transport of TiCoSb single crystals

被引:14
|
作者
Serrano-Sanchez, Federico [1 ]
Yao, Mengyu [1 ]
He, Bin [1 ]
Chen, Dong [1 ]
Gloskovskii, Andrei [2 ]
Fedorov, Alexander [3 ,4 ]
Auffermann, Gudrun [1 ]
Liu, Enke [5 ]
Burkhardt, Ulrich [1 ]
Fecher, Gerhard H. [1 ]
Fu, Chenguang [1 ,6 ]
Felser, Claudia [1 ]
Pan, Yu [1 ]
机构
[1] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[2] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany
[3] Helmholtz Zentrum Berlin Mat & Energie, Berlin, Germany
[4] Leibniz IFW Dresden, Inst Solid State Res, D-01069 Dresden, Germany
[5] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[6] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
HALF-HEUSLER PHASES; CONVERGENCE; PERFORMANCE; BANDS;
D O I
10.1039/d2nr02556f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Gamma band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.
引用
收藏
页码:10067 / 10074
页数:8
相关论文
共 50 条
  • [41] Low-temperature electronic heat transport in La2-xSrxCuO4 single crystals: Unusual low-energy physics in the normal and superconducting states
    Takeya, J.
    Ando, Yoichi
    Komiya, Seiki
    Sun, X.F.
    Physical Review Letters, 2002, 88 (07) : 770011 - 770014
  • [42] LOW-TEMPERATURE DEFORMATION OF IMPURE MGO SINGLE-CRYSTALS
    APPEL, F
    WIELKE, B
    MATERIALS SCIENCE AND ENGINEERING, 1985, 73 (1-2): : 97 - 103
  • [43] Low-temperature photoluminescence in AgGaSe2 single crystals
    Bodnar', IV
    Yakushev, MV
    TECHNICAL PHYSICS, 2004, 49 (03) : 335 - 337
  • [44] LOW-TEMPERATURE VIOLET LUMINESCENCE OF CUJ SINGLE-CRYSTALS
    NIKITENKO, VA
    STOYUKHIN, SG
    OPTIKA I SPEKTROSKOPIYA, 1983, 54 (02): : 193 - 196
  • [45] LOW-TEMPERATURE ROLLING AND ANNEALING OF NIOBIUM SINGLE-CRYSTALS
    GINDIN, IA
    STARODUB.YD
    BARYAKHT.FG
    MATSEVIT.VM
    LEVIKOVA, LV
    LEVIKOV, YA
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1970, 30 (02): : 210 - &
  • [46] Low-temperature photoluminescence in AgGaSe2 single crystals
    I. V. Bodnar’
    M. V. Yakushev
    Technical Physics, 2004, 49 : 335 - 337
  • [47] Features of the low-temperature plasticity of Pb-In single crystals
    Isaev, NV
    Fomenko, VS
    Pustovalov, VV
    Braude, IS
    LOW TEMPERATURE PHYSICS, 2002, 28 (05) : 369 - 375
  • [48] Low-temperature conductivity in CuGaS2 single crystals
    Abdullaev, N. A.
    Aliguliyeva, Kh V.
    Aliyeva, L. N.
    Qasimoglu, I.
    Kerimova, T. G.
    SEMICONDUCTORS, 2015, 49 (04) : 428 - 431
  • [49] LOW-TEMPERATURE DEFORMATION MECHANISMS IN LIF SINGLE-CRYSTALS
    FOTEDAR, HL
    STOEBE, TG
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1975, 31 (02): : 399 - 408
  • [50] Low-temperature magnetic properties of terbium orthoferrite single crystals
    Guretskii, SA
    Ges, AP
    Luginets, AM
    Milovanov, AS
    Fil, VD
    Zherlitsyn, SV
    CRYSTAL RESEARCH AND TECHNOLOGY, 1996, 31 (07) : 897 - 902