Triallyl isocyanurate-assisted grafting of maleic anhydride to poly(lactic acid): Efficient compatibilizers for poly(lactic acid)/talc composites with enhanced mechanical properties

被引:4
作者
Park, Seung Bin [1 ,2 ]
Lee, Young Jun [1 ]
Ku, Kang Hee [3 ]
Kim, Bumjoon J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Lotte Chem Res Inst, PO Dev Div, Daejeon, South Korea
[3] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
biopolymers and renewable polymers; compatibilizers; composites; grafting; PLA; POLYLACTIC ACID; PHYSICOMECHANICAL PROPERTIES; PLA; TALC; BIODEGRADABILITY; NANOCOMPOSITES; FUNCTIONALIZATION; CRYSTALLIZATION; PERFORMANCE; PLASTICS;
D O I
10.1002/app.51488
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA)/talc composites are of considerable interest because they can address the drawbacks associated with PLA, such as poor thermal/mechanical properties and high cost. Nevertheless, due to low compatibility between PLA and talc, coupling agents, or compatibilizers capable of increasing the adhesion between the two materials are required. Herein, triallyl isocyanurate (TAIC)-assisted maleic anhydride (MAH)-grafted PLA (i.e., PLA-g-[MAH/TAIC]) copolymers are developed as compatibilizers for achieving PLA/talc composites with significantly enhanced mechanical properties. The TAIC increases the MAH activity and inhibits the degradation of the PLA, thus effectively increasing the MAH grafting degree. Importantly, the PLA-g-(MAH/TAIC) copolymers improve the mechanical properties (30% and 17% increases in the elongation at break and Izod impact strength, respectively) compared to those of the PLA/talc composite with PLA-g-MAH.
引用
收藏
页数:10
相关论文
共 66 条
[1]   Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources [J].
Ates, Burhan ;
Koytepe, Suleyman ;
Ulu, Ahmet ;
Gurses, Canbolat ;
Thakur, Vijay Kumar .
CHEMICAL REVIEWS, 2020, 120 (17) :9304-9362
[2]   Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties [J].
Balakrishnan, Harintharavimal ;
Hassan, Azman ;
Wahit, Mat Uzir ;
Yussuf, A. A. ;
Razak, Shamsul Bahri Abdul .
MATERIALS & DESIGN, 2010, 31 (07) :3289-3298
[3]   Alternating radical copolymerization of vinyl acetate and tert-butyl-2-trifluoromethacrylate [J].
Banerjee, Sanjib ;
Ladmiral, Vincent ;
Totee, Cedric ;
Ameduri, Bruno .
EUROPEAN POLYMER JOURNAL, 2018, 104 :164-169
[4]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/NPHYS3532, 10.1038/nphys3532]
[5]  
Carlson D, 1999, J APPL POLYM SCI, V72, P477, DOI 10.1002/(SICI)1097-4628(19990425)72:4<477::AID-APP3>3.0.CO
[6]  
2-Q
[7]   Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review [J].
Chen, Guo-Qiang ;
Patel, Martin K. .
CHEMICAL REVIEWS, 2012, 112 (04) :2082-2099
[8]   Preparation and properties of poly(lactic acid)/cellulose nanocrystals nanocomposites compatibilized with maleated poly(lactic acid) [J].
Chen, Jian ;
He, Hui ;
Yu, Peng ;
Jia, Yunchao ;
Meng, Shuna ;
Wang, Jingyuan .
POLYMER COMPOSITES, 2018, 39 (09) :3092-3101
[9]   Effects of maleated-PLA compatibilizer on the properties of poly(lactic acid)/halloysite clay composites [J].
Chow, W. S. ;
Tham, W. L. ;
Seow, P. C. .
JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2013, 26 (10) :1349-1363
[10]   Reactive functionalization of poly(lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA [J].
Detyothin, Sukeewan ;
Selke, Susan E. M. ;
Narayan, Ramani ;
Rubino, Maria ;
Auras, Rafael .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (12) :2697-2708