SHARP GRADIENT ESTIMATES FOR A HEAT EQUATION IN RIEMANNIAN MANIFOLDS

被引:25
作者
Ha Tuan Dung [1 ,2 ]
Nguyen Thac Dung [3 ,4 ]
机构
[1] Hanoi Pedag Univ, Fac Math, 2 Xuan Hoa, Xuan Hoa, Vinh Phuc, Vietnam
[2] Natl Tsing Hua Univ, Dept Math, Hsinchu, Taiwan
[3] Hanoi Univ Sci VNU, Fac Math Mech Informat, Hanoi, Vietnam
[4] Thang Long Univ, Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
Ancient solution; heat equation; Liouville theorem; sharp gradient estimate; sublinear growth; THEOREM;
D O I
10.1090/proc/14645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove sharp gradient estimates for a positive solution to the heat equation u(t) = Delta u + au log u in complete noncompact Riemannian manifolds. As its application, we show that if u is a positive solution of the equation u(t) = Delta u and log u is of sublinear growth in both spatial and time directions, then u must be constant. This gradient estimate is sharp since it is well known that u(x, t) = e(x+t) satisfying ut = Delta u.
引用
收藏
页码:5329 / 5338
页数:10
相关论文
共 13 条
[1]   A Liouville-Type Theorem for Smooth Metric Measure Spaces [J].
Brighton, Kevin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :562-570
[3]  
Hamilton R. S, 1993, Commun. Anal. Geom., V1, P113, DOI 10.4310/CAG.1993.v1.n1.a6
[4]   Gradient estimates and Liouville type theorems for a nonlinear elliptic equation [J].
Huang, Guangyue ;
Ma, Bingqing .
ARCHIV DER MATHEMATIK, 2015, 105 (05) :491-499
[5]   GRADIENT ESTIMATE FOR A NONLINEAR HEAT EQUATION ON RIEMANNIAN MANIFOLDS [J].
Jiang, Xinrong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) :3635-3642
[6]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[7]   Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature [J].
Li, Yi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :1-32
[8]  
Lin F. H., COMM PURE APPL MATH
[9]   Gradient estimates for some f-heat equations driven by Lichnerowicz's equation on complete smooth metric measure spaces [J].
Nguyen Thac Dung ;
Nguyen Ngoc Khanh ;
Quoc Anh Ngo .
MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) :471-501
[10]   Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J].
Souplet, Philippe ;
Zhang, Qi S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1045-1053