Construction of p-adic semi-stable representations

被引:36
作者
Breuil, C [1 ]
机构
[1] Univ Paris Sud, CNRS, URA 752, F-91405 Orsay, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 1998年 / 31卷 / 03期
关键词
D O I
10.1016/S0012-9593(98)80136-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to generalize to the semi-stable setting the Fonraine-Laffaille crystalline theory. Let k be a perfect field of caracteristic p > 0, W the Witt vectors in k, K-0 = Fr(W) and S = W<u> the p-adic completion of the P.D. polynomial algebra. We define a category of S-modules with p-torsion and show it is abelian and has the same simple objects as Fontaine-Laffaille's <(MF)under bar>(f.p-2)(tvr) category. We define an exact and fully faithfull functor from this category to the category of p-adic representations of Gal((K) over bar(0)/K-0) of finite length. We define "strongly divisible" free S-modules and show how one can build p-adic semi-stable representations with them, using the previous torsion theory. By finding strongly divisible S-modules in dimension 2, we build all the dimension 2 p-adic semi-stable representations with differences in Hodge-Tate weights not exceeding p - 2. (C) Elsevier, Paris.
引用
收藏
页码:281 / 327
页数:47
相关论文
共 25 条
[1]  
BERTHELOT P, 1975, P S PURE MATH, V29, P315
[2]   Log-syntomic topology, log-crystalline cohomology and Cech cohomology [J].
Breuil, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (04) :587-647
[3]  
Breuil C, 1997, MATH ANN, V307, P191, DOI 10.1007/s002080050031
[4]  
BREUIL C, 1997, COHOMOLOGIE ETALE P
[5]  
Faltings G., 1989, Algebraic analysis, geometry, and number theory, P25
[6]  
FALTINGS G, 1992, J ALGEBRAIC GEOM, V1, P61
[7]  
Fontaine J.-M., 1977, ASTERISQUE, V47/48
[8]  
FONTAINE JM, 1982, ANN SCI ECOLE NORM S, V15, P547
[9]  
FONTAINE JM, 1994, ASTERISQUE, P113
[10]  
FONTAINE JM, 1994, ASTERISQUE, P59