Improving L-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering

被引:10
|
作者
Iranmanesh, Elham [1 ]
Asadollahi, Mohammad Ali [1 ]
Biria, Davoud [1 ]
机构
[1] Univ Isfahan, Fac Adv Sci & Technol, Dept Biotechnol, Esfahan 8174673441, Iran
关键词
Metabolic engineering; L-phenylacetylcarbinol; Saccharomyces cerevisiae; Flux balance analysis; OptGene; (R)-PHENYLACETYLCARBINOL PRODUCTION; PYRUVATE DECARBOXYLASE; YEAST; BENZALDEHYDE; BIOTRANSFORMATION; CARBINOL; ENZYMES; RECONSTRUCTION; BIOSYNTHESIS; PREDICTION;
D O I
10.1016/j.jbiotec.2019.11.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
L-Phenylacetylcarbinol (L-PAC) which is used as a precursor for the production of ephedrine and pseudoephedrine is the first reported biologically produced a-hydroxy ketone compound. L-PAC is commercially produced by the yeast Saccharomyces cerevisiae. Yeast cells transform exogenously added benzaldehyde into L-PAC by using the action of pyruvate decarboxylase (PDC) enzyme. In this work, genome-scale model and flux balance analysis were used to identify novel target genes for the enhancement of L-PAC production in yeast. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene and minimization of metabolic adjustments. Six single gene deletion strains, namely Delta rpe1, Delta pda1, Delta adh3, Delta adh1, Delta zwf1 and Delta pdc1, were predicted in silico and further tested in vivo by using knock-out strains cultivated semi-anaerobically on glucose and benzaldehyde as substrates. Delta zwf1 mutant exhibited the highest L-PAC formation (2.48 g/L) by using 2 g/L of benzaldehyde which is equivalent to 88 % of the theoretical yield.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [41] Mitochondrial expression of metabolic enzymes for improving carotenoid production in Saccharomyces cerevisiae
    Matsumoto, Takuya
    Osawa, Tomoki
    Taniguchi, Hikaru
    Saito, Akira
    Yamada, Ryosuke
    Ogino, Hiroyasu
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 189
  • [42] Engineering Saccharomyces cerevisiae for enhanced (-)-α-bisabolol production
    Jiang, Yinkun
    Xia, Lu
    Gao, Song
    Li, Ning
    Yu, Shiqin
    Zhou, Jingwen
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2023, 8 (02) : 187 - 195
  • [43] Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering
    Li, Qian
    Sun, Zhiqiang
    Li, Jing
    Zhang, Yansheng
    FEMS MICROBIOLOGY LETTERS, 2013, 345 (02) : 94 - 101
  • [44] Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals
    Wang, Shuai
    Zhao, Fengguang
    Yang, Manli
    Lin, Ying
    Han, Shuangyan
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (02) : 163 - 190
  • [45] Process parameters and reusability of the free cell mass of Torulaspora delbrueckii for the production of L-phenylacetylcarbinol (L-PAC)
    Shukla, VB
    Kulkarni, PR
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2001, 17 (03) : 301 - 306
  • [46] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Pegah Amiri
    Azar Shahpiri
    Mohammad Ali Asadollahi
    Fariborz Momenbeik
    Siavash Partow
    Biotechnology Letters, 2016, 38 : 503 - 508
  • [47] Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Chlorogenic Acid from Glucose
    Xiao, Feng
    Lian, Jiazhang
    Tu, Shuai
    Xie, Linlin
    Li, Jun
    Zhang, Fuming
    Linhardt, Robert J.
    Huang, Haichan
    Zhong, Weihong
    ACS SYNTHETIC BIOLOGY, 2022, 11 (02): : 800 - 811
  • [48] Process parameters and reusability of the free cell mass of Torulaspora delbrueckii for the production of L-phenylacetylcarbinol (L-PAC)
    V.B. Shukla
    P.R. Kulkarni
    World Journal of Microbiology and Biotechnology, 2001, 17 : 301 - 306
  • [49] Engineering cannabinoid production in Saccharomyces cerevisiae
    Schmidt, Christina
    Aras, Marco
    Kayser, Oliver
    BIOTECHNOLOGY JOURNAL, 2024, 19 (02)
  • [50] Engineering Saccharomyces cerevisiae for production of simvastatin
    Bond, Carly M.
    Tang, Yi
    METABOLIC ENGINEERING, 2019, 51 : 1 - 8