Combining forecasts;
Comparative studies;
Density forecasts;
Ensemble model output statistics;
Precipitation;
Weather forecasting;
Wind speed;
MODEL OUTPUT STATISTICS;
WIND-SPEED;
SCORING RULES;
PRECIPITATION FORECASTS;
PROBABILISTIC FORECASTS;
DENSITY FORECASTS;
EMOS MODEL;
PERFORMANCE;
REGRESSION;
SYSTEM;
D O I:
10.1016/j.ijforecast.2018.01.005
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
Statistical post-processing techniques are now used widely for correcting systematic biases and errors in the calibration of ensemble forecasts obtained from multiple runs of numerical weather prediction models. A standard approach is the ensemble model output statistics (EMOS) method, which results in a predictive distribution that is given by a single parametric law, with parameters that depend on the ensemble members. This article assesses the merits of combining multiple EMOS models based on different parametric families. In four case studies with wind speed and precipitation forecasts from two ensemble prediction systems, we investigate the performances of state of the art forecast combination methods and propose a computationally efficient approach for determining linear pool combination weights. We study the performance of forecast combination compared to that of the theoretically superior but cumbersome estimation of a full mixture model, and assess which degree of flexibility of the forecast combination approach yields the best practical results for post-processing applications. (C) 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:477 / 496
页数:20
相关论文
共 53 条
[1]
[Anonymous], 2011, INT GEOPHYS, DOI DOI 10.1016/B978-0-12-385022-5.00008-7
[2]
[Anonymous], 2017, R LANG ENV STAT COMP
[3]
[Anonymous], 1995, DESCRIPTION 5 GENERA
[4]
[Anonymous], 2007, Numerical Recipes: The Art of Scientific Computing
机构:
Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4028 Debrecen, HungaryUniv Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4028 Debrecen, Hungary
机构:
Fed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA
Del Negro, Marco
Hasegawa, Raiden B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, 3730 Walnut St, Philadelphia, PA 19104 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA
Hasegawa, Raiden B.
Schorfheide, Frank
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Econ, 3718 Locust Walk, Philadelphia, PA 19104 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA
机构:
Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4028 Debrecen, HungaryUniv Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4028 Debrecen, Hungary
机构:
Fed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA
Del Negro, Marco
Hasegawa, Raiden B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, 3730 Walnut St, Philadelphia, PA 19104 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA
Hasegawa, Raiden B.
Schorfheide, Frank
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Econ, 3718 Locust Walk, Philadelphia, PA 19104 USAFed Reserve Bank New York, Res Dept, 33 Liberty St, New York, NY 10045 USA