A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces

被引:92
|
作者
Sajda, P [1 ]
Gerson, A
Müller, KR
Blankertz, B
Parra, L
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Fraunhofer FIRST, D-12489 Berlin, Germany
[3] Sarnoff Corp, Princeton, NJ 08540 USA
关键词
brain computer interface (BCI); data analysis competition; electroencephalography (EEG); machine learning;
D O I
10.1109/TNSRE.2003.814453
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present three datasets that were used to conduct an open competition for evaluating the performance of various machine-learning algorithms used in brain-computer interfaces. The datasets were collected for tasks that included: 1) detecting explicit left/right (L/R) button press; 2) predicting imagined L/R button press; and 3) vertical cursor control. A total of ten entries were submitted to the competition, with winning results reported for two of the three datasets.
引用
收藏
页码:184 / 185
页数:2
相关论文
共 50 条
  • [1] A reductionist approach to the analysis of learning in brain-computer interfaces
    Danziger, Zachary
    BIOLOGICAL CYBERNETICS, 2014, 108 (02) : 183 - 201
  • [2] Efficient machine learning algorithm for electroencephalogram modeling in brain-computer interfaces
    Yi, Haibo
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 9233 - 9243
  • [3] A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics
    Dillen, Arnau
    Lathouwers, Elke
    Miladinovic, Aleksandar
    Marusic, Uros
    Ghaffari, Fakhreddine
    Romain, Olivier
    Meeusen, Romain
    De Pauw, Kevin
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [4] Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces
    Wang, Pengpai
    Zhou, Yueying
    Li, Zhongnian
    Huang, Shuo
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 2721 - 2732
  • [5] Stimuli and Feature Extraction Algorithms for Brain-Computer Interfaces: A Systematic Comparison
    Bittencourt-Villalpando, Mayra
    Maurits, Natasha M.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (09) : 1669 - 1679
  • [6] A Data Augmentation Scheme for Geometric Deep Learning in Personalized Brain-Computer Interfaces
    Kalaganis, Fotis P.
    Laskaris, Nikolaos A.
    Chatzilari, Elisavet
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    IEEE ACCESS, 2020, 8 : 162218 - 162229
  • [7] Adoption of Machine Learning Techniques to Enhance Classification Performance in Reactive Brain-Computer Interfaces
    Apicella, Andrea
    Arpaia, Pasquale
    Cataldo, Andrea
    De Benedetto, Egidio
    Donato, Nicola
    Duraccio, Luigi
    Giugliano, Salvatore
    Prevete, Roberto
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,
  • [8] Transfer Learning: A Riemannian Geometry Framework With Applications to Brain-Computer Interfaces
    Zanini, Paolo
    Congedo, Marco
    Jutten, Christian
    Said, Salem
    Berthoumieu, Yannick
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (05) : 1107 - 1116
  • [9] Direct-Sense Brain-Computer Interfaces and Wearable Computers
    Lin, Chin-Teng
    Tien-Thong Nguyen Do
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (01): : 298 - 312
  • [10] Affective Brain-Computer Interfaces (aBCIs): A Tutorial
    Wu, Dongrui
    Lu, Bao-Liang
    Hu, Bin
    Zeng, Zhigang
    PROCEEDINGS OF THE IEEE, 2023, 111 (10) : 1314 - 1332