Penetration depth of Cooper pairs in the IrMn antiferromagnet

被引:5
作者
Seeger, R. L. [1 ]
Forestier, G. [1 ]
Gladii, O. [1 ]
Leiviska, M. [1 ]
Auffret, S. [1 ]
Joumard, I. [1 ]
Gomez, C. [2 ]
Rubio-Roy, M. [1 ]
Buzdin, A. I. [3 ,4 ]
Houzet, M. [5 ]
Baltz, V. [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, CEA, Grenoble INP,IRIG SPINTEC, F-38000 Grenoble, France
[2] Grenoble INP, CIME Nanotech, F-38000 Grenoble, France
[3] Univ Bordeaux, CNRS, LOMA, F-33405 Talence, France
[4] Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
[5] Univ Grenoble Alpes, CEA, Grenoble INP, IRIG PHELIQS, F-38000 Grenoble, France
关键词
EXCHANGE-BIAS; SUPERCONDUCTIVITY;
D O I
10.1103/PhysRevB.104.054413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Suppression of superconductivity due to the proximity effect between a superconductor and a ferromagnet can be partially alleviated when a Cooper pair simultaneously samples different directions of the short-range exchange field. The superconductor's critical temperature, T-C, is therefore expected to partially recover when the ferromagnet is in a multidomain state, as opposed to a single-domain state. Here, we discuss series of experiments performed with ferromagnet(Pt/Co)/spacer(IrMn and Pt)/superconductor(NbN) heterostructures. By tuning the various parameters in play, e.g., superconducting coherence length-to-thicknesses ratio, and domain sizes, we obtained up to 10% recovery of the superconducting critical temperature Delta T-C/T-C. This large-scale recovery made investigations possible. In particular, from the spacer thickness dependence of Delta T-C/T-C, it was possible to deduce the characteristic length for Cooper pair penetration in an IrMn antiferromagnet. This information is crucial for electronic transport, and up to now has been difficult to access experimentally for antiferromagnets.
引用
收藏
页数:12
相关论文
共 38 条
  • [21] Jungwirth T, 2016, NAT NANOTECHNOL, V11, P231, DOI [10.1038/NNANO.2016.18, 10.1038/nnano.2016.18]
  • [22] THE DOMAIN-STRUCTURE IN ULTRATHIN MAGNETIC-FILMS
    KAPLAN, B
    GEHRING, GA
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1993, 128 (1-2) : 111 - 116
  • [23] The antiferromagnetic structures of IrMn3 and their influence on exchange-bias
    Kohn, A.
    Kovacs, A.
    Fan, R.
    McIntyre, G. J.
    Ward, R. C. C.
    Goff, J. P.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [24] Josephson effect in hybrid oxide heterostructures with an antiferromagnetic layer
    Komissinskiy, P.
    Ovsyannikov, G. A.
    Borisenko, I. V.
    Kislinskii, Yu. V.
    Constantinian, K. Y.
    Zaitsev, A. V.
    Winkler, D.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [25] Linder J, 2015, NAT PHYS, V11, P307, DOI [10.1038/NPHYS3242, 10.1038/nphys3242]
  • [26] Superconductor-ferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures
    Potenza, A
    Marrows, CH
    [J]. PHYSICAL REVIEW B, 2005, 71 (18)
  • [27] Enhancement of the superconducting transition temperature in Nb/Permalloy bilayers by controlling the domain state of the ferromagnet
    Rusanov, AY
    Hesselberth, M
    Aarts, J
    Buzdin, AI
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (05) : 057002 - 1
  • [28] Direct evidence of imprinted vortex states in the antiferromagnet of exchange biased microdisks
    Salazar-Alvarez, G.
    Kavich, J. J.
    Sort, J.
    Mugarza, A.
    Stepanow, S.
    Potenza, A.
    Marchetto, H.
    Dhesi, S. S.
    Baltz, V.
    Dieny, B.
    Weber, A.
    Heyderman, L. J.
    Nogues, J.
    Gambardella, P.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [29] Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field
    Sebastian Bergeret, F.
    Silaev, Mikhail
    Virtanen, Pauli
    Heikkila, Tero T.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (04)
  • [30] Superconducting spin switch with perpendicular magnetic anisotropy
    Singh, A.
    Suergers, C.
    von Loehneysen, H.
    [J]. PHYSICAL REVIEW B, 2007, 75 (02):