An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots

被引:253
|
作者
Partovibakhsh, Maral [1 ]
Liu, Guangjun [1 ]
机构
[1] Ryerson Univ, Dept Aerosp Engn, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive extended Kalman filter (AEKF); adaptive unscented Kalman filter (AUKF); lithium-ion battery; online parameter estimation; state of charge (SoC); LEAD-ACID-BATTERIES; MANAGEMENT-SYSTEMS; PREDICTING STATE; PACKS;
D O I
10.1109/TCST.2014.2317781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, to get a more accurate and robust state of charge (SoC) estimation, the lithium-ion battery model parameters are identified using an adaptive unscented Kalman filtering method, and based on the updated model, the battery SoC is estimated consequently. An adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the unscented Kalman filter (UKF) context. The effectiveness of the proposed method is evaluated through experiments under different power duties in the laboratory environment. The obtained results are compared with that of the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms. The comparison shows that the proposed method provides better accuracy both in battery model parameters estimation and the battery SoC estimation.
引用
收藏
页码:357 / 363
页数:7
相关论文
共 50 条
  • [11] Online State-of-Charge Estimation for Lithium-ion Batteries Based on the ARX Model
    Nie W.
    Tan W.
    Qiu G.
    Li C.
    Nie X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (18): : 5415 - 5424
  • [12] Online estimation of state-of-charge based on the H infinity and unscented Kalman filters for lithium ion batteries
    Yu, Quanqing
    Xiong, Rui
    Lin, Cheng
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2791 - 2796
  • [13] An adaptive spherical square-root double unscented Kalman filtering algorithm for estimating state-of-charge of lithium-ion batteries
    Jia, Xianyi
    Wang, Shunli
    Qiao, Jialu
    Cao, Wen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (10) : 14256 - 14267
  • [14] State-of-charge estimation of Lithium-ion batteries using an adaptive dual unscented Kalman filter based on a reduced-order model
    Hosseininasab, Seyedmehdi
    Momtaheni, Nastaran
    Pischinger, Stefan
    Guenther, Marco
    Bauer, Lennart
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [15] An Online Estimation Algorithm of State-of-Charge of Lithium-ion Batteries
    Feng, Yong
    Meng, Cheng
    Han, Fengling
    Yi, Xun
    Yu, Xinghuo
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3879 - 3882
  • [16] Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
    Shrivastava, Prashant
    Soon, Tey Kok
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113
  • [17] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [18] Parallel Arithmetical Unscented Kalman Filter Technic for Lithium-ion Battery State-of-Charge Estimation
    Liu, Weilong
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 669 - 675
  • [19] State-of-charge estimation in lithium-ion batteries: A particle filter approach
    Tulsyan, Aditya
    Tsai, Yiting
    Gopaluni, R. Bhushan
    Braatz, Richard D.
    JOURNAL OF POWER SOURCES, 2016, 331 : 208 - 223
  • [20] Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter
    Zhu, Rui
    Duan, Bin
    Zhang, Junming
    Zhang, Qi
    Zhang, Chenghui
    APPLIED ENERGY, 2020, 277