Long-term creep-rupture strength prediction for modified 9Cr-1Mo ferritic steel and type 316L(N) austenitic stainless steel

被引:20
|
作者
Srinivasan, V. S. [1 ]
Choudhary, B. K. [1 ]
Mathew, M. D. [1 ]
Jayakumar, T. [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Mat & Met Grp, Kalpakkam 603102, Tamil Nadu, India
关键词
creep life extrapolation; Larson-Miller parameter; artificial neural network; Wilshire approach; PARAMETRIC METHODS; HIGH-TEMPERATURE; LIFE PREDICTION; NEURAL-NETWORKS;
D O I
10.3184/096034012X13269690282656
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of long-term creep-rupture strength values for mod. 9Cr-1Mo ferritic steel and 316L(N) austenitic stainless steel is made using several life prediction methodologies at 773, 823 and 873 K. Creep-rupture strength values have been predicted following the Larson-Miller parameter, the Orr-Sherby-Dorn parameter, artificial neural network, and Wilshire approaches for rupture lives up to 60 years (5.256 x 10(5)h) using creep-rupture data available in the literature. It has been demonstrated that the prediction of creep-rupture strength values using these approaches are comparable. Creep-rupture strength values have been also evaluated using linear extrapolation of average creep-rupture strength values given in French Nuclear Design Code RCC-MR for durations more than 3 x 10(5)h. Predicted creep-rupture strength values using the literature data are found to be higher than those obtained from RCC-MR for both 9Cr-1Mo steel and 316L(N) SS. This suggested that the RCC-MR data are conservative and can be safely used for a design life of 60 years.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 28 条
  • [21] Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel.: Part III:: Lifetime prediction
    Fournier, B.
    Sauzay, M.
    Caes, C.
    Noblecourt, M.
    Mottot, M.
    Bougault, A.
    Rabeau, V.
    Man, J.
    Gillia, O.
    Lemoine, P.
    Pineau, A.
    INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (10-11) : 1797 - 1812
  • [22] Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint
    Shankar, Vani
    Mariappan, K.
    Sandhya, R.
    Mathew, M. D.
    Jayakumar, T.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (03): : 1390 - 1400
  • [23] An alternative testing method to investigate creep-dominant creep-fatigue interaction and its application on modified 9Cr-1Mo steel
    Uijeong Ro
    Jeong Hwan Kim
    Sangyeop Kim
    Moon Ki Kim
    Journal of Mechanical Science and Technology, 2022, 36 : 5143 - 5151
  • [24] An alternative testing method to investigate creep-dominant creep-fatigue interaction and its application on modified 9Cr-1Mo steel
    Ro, Uijeong
    Kim, Jeong Hwan
    Kim, Sangyeop
    Kim, Moon Ki
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (10) : 5143 - 5151
  • [25] Long term creep-rupture behaviour of 813 K exposed 2.25-1Mo steel between 773 and 873 K
    Ray, A. K.
    Diwakar, K.
    Prasad, B. N.
    Tiwari, Y. N.
    Ghosh, R. N.
    Whittenberger, J. D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 454 : 124 - 131
  • [26] Low cycle fatigue and creep-fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach
    Srinivasan, VS
    Valsan, A
    Rao, KBS
    Mannan, SL
    Raj, B
    INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (12) : 1327 - 1338
  • [27] Transition of Crack from Type IV to Type II Resulting from Improved Utilization of Boron in the Modified 9Cr-1Mo Steel Weldment
    Das, C. R.
    Albert, S. K.
    Swaminathan, J.
    Raju, S.
    Bhaduri, A. K.
    Murty, B. S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (10): : 3724 - 3741
  • [28] A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel
    Samantaray, Dipti
    Mandal, Sumantra
    Bhaduri, A. K.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (02) : 568 - 576