Long-term creep-rupture strength prediction for modified 9Cr-1Mo ferritic steel and type 316L(N) austenitic stainless steel

被引:20
作者
Srinivasan, V. S. [1 ]
Choudhary, B. K. [1 ]
Mathew, M. D. [1 ]
Jayakumar, T. [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Mat & Met Grp, Kalpakkam 603102, Tamil Nadu, India
关键词
creep life extrapolation; Larson-Miller parameter; artificial neural network; Wilshire approach; PARAMETRIC METHODS; HIGH-TEMPERATURE; LIFE PREDICTION; NEURAL-NETWORKS;
D O I
10.3184/096034012X13269690282656
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of long-term creep-rupture strength values for mod. 9Cr-1Mo ferritic steel and 316L(N) austenitic stainless steel is made using several life prediction methodologies at 773, 823 and 873 K. Creep-rupture strength values have been predicted following the Larson-Miller parameter, the Orr-Sherby-Dorn parameter, artificial neural network, and Wilshire approaches for rupture lives up to 60 years (5.256 x 10(5)h) using creep-rupture data available in the literature. It has been demonstrated that the prediction of creep-rupture strength values using these approaches are comparable. Creep-rupture strength values have been also evaluated using linear extrapolation of average creep-rupture strength values given in French Nuclear Design Code RCC-MR for durations more than 3 x 10(5)h. Predicted creep-rupture strength values using the literature data are found to be higher than those obtained from RCC-MR for both 9Cr-1Mo steel and 316L(N) SS. This suggested that the RCC-MR data are conservative and can be safely used for a design life of 60 years.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2007, DESIGN CONSTRUCTION
[2]  
[Anonymous], 1996, NIMS DAT BAS
[3]  
[Anonymous], 2002, Design and construction of building components with fibre-reinforced polymers
[4]  
[Anonymous], 1993, FUNDAMENTALS NEURAL
[5]   Prediction of breakdown transition of creep strength in advanced high Cr ferritic steels by hardness measurement of aged structures at high temperature [J].
Armaki, Hassan Ghassemi ;
Maruyama, Kouichi ;
Mitsuru, Yoshizawa ;
Igarashi, Masaaki .
MECHANICAL BEHAVIOR OF MATERIALS X, PTS 1AND 2, 2007, 345-346 :553-+
[6]  
Cipolla L., 2005, INT C SUP HIGH STREN
[7]   Method for improving parametric creep rupture life of 2•25Cr-1Mo steel using artificial neural networks [J].
Evans, M .
MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (06) :647-658
[8]   Macroscopic results of long-term creep on a modified 9Cr-1Mo steel (T91) [J].
Haney, Erin M. ;
Dalle, France ;
Sauzay, Maxime ;
Vincent, Ludovic ;
Tournie, Ivan ;
Allais, Lucien ;
Fournier, Benjamin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 :99-103
[9]   Neural networks for critical high temperature component life prediction [J].
Johnston, R. E. .
MATERIALS SCIENCE AND TECHNOLOGY, 2011, 27 (01) :108-114
[10]   Application and standard error analysis of the parametric methods for predicting the creep life of type 316LN SS [J].
Kim, WG ;
Yoon, SN ;
Ryu, WS .
ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4, 2005, 297-300 :2272-2277