Calcium Signaling in Dendritic Spines

被引:123
|
作者
Higley, Michael J. [2 ]
Sabatini, Bernardo L. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Yale Univ, Sch Med, Dept Neurobiol, Program Cellular Neurosci Neurodegenerat & Repair, New Haven, CT 06520 USA
来源
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY | 2012年 / 4卷 / 04期
关键词
PROPAGATING ACTION-POTENTIALS; SERIAL ELECTRON-MICROSCOPY; GREEN FLUORESCENT PROTEINS; NMDA RECEPTORS; CA2+ CHANNELS; SINGLE SPINES; PYRAMIDAL CELLS; DIFFERENTIAL DISTRIBUTION; SUBCELLULAR-LOCALIZATION; COINCIDENCE DETECTION;
D O I
10.1101/cshperspect.a005686
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Calcium (Ca2+) is a ubiquitous signaling molecule that accumulates in the cytoplasm in response to diverse classes of stimuli and, in turn, regulates many aspects of cell function. In neurons, Ca2+ influx in response to action potentials or synaptic stimulation triggers neurotransmitter release, modulates ion channels, induces synaptic plasticity, and activates transcription. In this article, we discuss the factors that regulate Ca2+ signaling in mammalian neurons with a particular focus on Ca2+ signaling within dendritic spines. This includes consideration of the routes of entry and exit of Ca2+, the cellular mechanisms that establish the temporal and spatial profile of Ca2+ signaling, and the biophysical criteria that determine which downstream signals are activated when Ca2+ accumulates in a spine. Furthermore, we also briefly discuss the technical advances that made possible the quantitative study of Ca2+ signaling in dendritic spines.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Dizocilpine reduces head diameter of dendritic spines in the hippocampus of adolescent rats
    Han, Dai
    Xu, Li
    Xiao, Honglei
    Schmidt, Georgia C. Prado
    Shi, Shenxun
    PSYCHIATRY RESEARCH, 2013, 210 (01) : 351 - 356
  • [32] Impermanence of dendritic spines in live adult CA1 hippocampus
    Attardo, Alessio
    Fitzgerald, James E.
    Schnitzer, Mark J.
    NATURE, 2015, 523 (7562) : 592 - +
  • [33] Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines
    Shirao, T
    Sekino, Y
    NEUROSCIENCE RESEARCH, 2001, 40 (01) : 1 - 7
  • [34] Structural dynamics of dendritic spines: Molecular composition, geometry and functional regulation
    Ebrahimi, Saman
    Okabe, Shigeo
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2014, 1838 (10): : 2391 - 2398
  • [35] CONSTANCY AND VARIABILITY IN CORTICAL STRUCTURE - A STUDY ON SYNAPSES AND DENDRITIC SPINES IN HEDGEHOG AND MONKEY
    SCHUZ, A
    DEMIANENKO, GP
    JOURNAL OF BRAIN RESEARCH-JOURNAL FUR HIRNFORSCHUNG, 1995, 36 (01): : 113 - 122
  • [36] Dynamin-dependent Membrane Drift Recruits AMPA Receptors to Dendritic Spines
    Jaskolski, Frederic
    Mayo-Martin, Belen
    Jane, David
    Henley, Jeremy M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (18) : 12491 - 12503
  • [37] DENDRITIC SPINES - CELLULAR SPECIALIZATIONS IMPARTING BOTH STABILITY AND FLEXIBILITY TO SYNAPTIC FUNCTION
    HARRIS, KM
    KATER, SB
    ANNUAL REVIEW OF NEUROSCIENCE, 1994, 17 : 341 - 371
  • [38] THE FUNCTION OF DENDRITIC SPINES - DEVICES SUBSERVING BIOCHEMICAL RATHER THAN ELECTRICAL COMPARTMENTALIZATION
    KOCH, C
    ZADOR, A
    JOURNAL OF NEUROSCIENCE, 1993, 13 (02): : 413 - 422
  • [39] Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines
    Mi, Zhen
    Si, Tuda
    Kapadia, Khushboo
    Li, Qian
    Muma, Nancy A.
    NEUROPHARMACOLOGY, 2017, 117 : 93 - 105
  • [40] ANALYSIS OF DENDRITIC SPINES MORPHOLOGY: FROM CLASSICAL DIVISION TO TYPES TOWARD ALTERNATIVE APPROACHES
    Pchitskaya, E., I
    Krylov, I. S.
    Vlasova, O. L.
    Bolsunovskaya, M., V
    Bezprozvanny, I. B.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2019, 12 (02): : 88 - 100