Coefficient Estimates for Certain Subclasses of Analytic and Bi-univalent Functions

被引:13
作者
Sun, Yong [1 ]
Jiang, Yue-Ping [1 ]
Rasila, Antti [2 ]
机构
[1] Hunan Univ, Sch Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Univalent analytic function; Bi-univalent function; Coefficient bound; FEKETE-SZEGO PROBLEM;
D O I
10.2298/FIL1502351S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For lambda >= 0 and 0 <= alpha < beta, we denote by K(lambda; alpha, beta) the class of normalized analytic functions satisfying the two sided-inequality alpha < R (zf'(z)/f(z) + lambda z(2)f ''(z)/f(z)) < beta (z is an element of U) where U is the open unit disk. Let K-Sigma(lambda; alpha, beta) be the class of bi- univalent functions such that f and its inverse f(-1) both belong to the class K(lambda; alpha, beta) . In this paper, we establish bounds for the coefficients, and solve the Fekete-Szego problem, for the class K(lambda; alpha, beta) . Furthermore, we obtain upper bounds for the first two Taylor-Maclaurin coefficients of the functions in the class K-Sigma(lambda; alpha, beta).
引用
收藏
页码:351 / 360
页数:10
相关论文
共 20 条