Compact implicit integration factor methods for some complex-valued nonlinear equations

被引:2
作者
Zhang Rong-Pei [1 ]
机构
[1] Liaoning ShiHua Univ, Sch Sci, Fushun 113001, Peoples R China
关键词
compact implicit integration factor method; finite difference; nonlinear Schrodinger equation; complex Ginzburg-Landau equation; GINZBURG-LANDAU EQUATIONS; FINITE-DIFFERENCE METHOD; STIFF SYSTEMS; FIBER;
D O I
10.1088/1674-1056/21/4/040205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear Schrodinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
Ascjer UM, 1997, APPL NUMER MATH, V25, P151
[2]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[3]   An exponential time differencing method for the nonlinear Schrodinger equation [J].
de la Hoz, F. ;
Vadillo, F. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (07) :449-456
[4]   Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation [J].
Ding Wan-Shan ;
Xi Ling ;
Liu Lian-Hua .
ACTA PHYSICA SINICA, 2008, 57 (12) :7705-7711
[5]   FINITE-ELEMENT METHODS FOR THE TIME-DEPENDENT GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (12) :119-133
[6]   Spectral deferred correction methods for ordinary differential equations [J].
Dutt, A ;
Greengard, L ;
Rokhlin, V .
BIT, 2000, 40 (02) :241-266
[7]   Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber [J].
Feng Jie ;
Xu Wen-Chen ;
Li Shu-Xian ;
Chen Wei-Cheng ;
Song Fang ;
Shen Min-Chang ;
Liu Song-Hao .
ACTA PHYSICA SINICA, 2007, 56 (10) :5835-5842
[8]   Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrodinger equations [J].
Gao, Zhen ;
Xie, Shusen .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) :593-614
[9]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[10]  
Liao HY, 2004, CHINESE PHYS, V13, P737