Fast and Effective Image Segmentation via Superpixels and Adaptive Thresholding

被引:2
作者
Jiang, Yunsheng
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2014 | 2014年 / 8866卷
关键词
Image segmentation; Superpixels; Adaptive thresholding;
D O I
10.1007/978-3-319-12436-0_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a fast and effective image segmentation algorithm by firstly clustering image pixels into a small number of superpixels and then merging these superpixels whose distances are below an adaptive threshold together to get the final segmented fields. The adoption of superpixels dramatically decreases the computation cost, while the adaptive thresholding aims to select a reasonable segmentation from a set of possible segmentations with hierarchical scales. The adaptive threshold can be calculated with a fast sequential procedure. Experiments on Berkeley Segmentation Data Set (BSDS500) demonstrate that our proposed algorithm is competitive to other state-of-the-art segmentation methods. Moreover, this segmentation framework can be improved to excellent performance by using more elaborate superpixel algorithms.
引用
收藏
页码:568 / 575
页数:8
相关论文
共 9 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[3]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619
[4]  
Cour T, 2005, PROC CVPR IEEE, P1124
[5]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[6]  
FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330
[7]  
Macqueen J., 1967, 5 BERK S MATH STAT P, P281, DOI DOI 10.1007/S11665-016-2173-6
[8]  
Ren XF, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P10
[9]   Normalized cuts and image segmentation [J].
Shi, JB ;
Malik, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (08) :888-905