Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method

被引:70
作者
Burzo, MG [1 ]
Komarov, PL [1 ]
Raad, PE [1 ]
机构
[1] So Methodist Univ, Dept Mech Engn, Nanoscale Electro Thermal Sci Lab, Dallas, TX 75275 USA
来源
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES | 2005年 / 28卷 / 04期
关键词
MOSFET devices; thermorellectance thermometry system;
D O I
10.1109/TCAPT.2005.859738
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a demonstration of the applicability and efficacy of an experimental system capable of noninvasively and nondestructively scanning the transient surface temperature of pulsed microelectronic devices with submicron spatial and sub-microsecond temporal resolutions. The article describes the features of the experimental setup, provides details of the calibration process used to map the changes in the measured surface reflectivity to absolute temperature values, and explains the data acquisition procedure used to measure the transient temperature over a given active region. This thermoreflectance thermometry system is shown to be particularly suited for directly measuring the surface temperature field of devices undergoing the fast transients that are typical of next generation microelectronic devices. To illustrate the experimental approach, both quasisteady and transient temperature measurement results are presented for standard MOSFET devices.
引用
收藏
页码:637 / 643
页数:7
相关论文
共 18 条
[1]   Self-heating study of an AlGaN/GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering [J].
Ahmad, I ;
Kasisomayajula, V ;
Holtz, M ;
Berg, JM ;
Kurtz, SR ;
Tigges, CP ;
Allerman, AA ;
Baca, AG .
APPLIED PHYSICS LETTERS, 2005, 86 (17) :1-3
[2]   High-power operation of electroabsorption modulators [J].
Bian, ZX ;
Christofferson, J ;
Shakouri, A ;
Kozodoy, P .
APPLIED PHYSICS LETTERS, 2003, 83 (17) :3605-3607
[3]   Thermoreflectance imaging of superlattice micro refrigerators [J].
Christofferson, J ;
Vashaee, D ;
Shakouri, A ;
Melese, P ;
Fan, XF ;
Zeng, GH ;
Labounty, C ;
Bowers, JE ;
Croke, ET .
SEVENTEENTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2001, 2001, :58-62
[4]  
CHRISTOFFERSON J, 2001, P INT MECH ENG C EXH
[5]   Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions [J].
Dilhaire, S ;
Grauby, S ;
Claeys, W .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :822-824
[6]   High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme [J].
Grauby, S ;
Forget, BC ;
Holé, S ;
Fournier, D .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (09) :3603-3608
[7]   LOW-ENERGY INTERBAND TRANSITIONS AND BAND STRUCTURE IN NUCKEL [J].
HANUS, J ;
FEINLEIB, J ;
SCOULER, WJ .
PHYSICAL REVIEW LETTERS, 1967, 19 (01) :16-&
[8]   Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm [J].
Heller, J ;
Bartha, JW ;
Poon, CC ;
Tam, AC .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :43-45
[9]   Short-time-scale thermal mapping of microdevices using a scanning thermoreflectance technique [J].
Ju, YS ;
Goodson, KE .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (02) :306-313
[10]  
KAYTAZ G, 2003, P 9 INT IEEE WORKSH, P251