Highly fluorescent CsPbBr3/TiO2 core/shell perovskite nanocrystals with excellent stability

被引:17
作者
Chen, Haitao [1 ,2 ,3 ]
Li, Renhua [1 ,3 ]
Guo, Anqi [1 ,3 ]
Xia, Yu [1 ,3 ]
机构
[1] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Lab Modern Acoust, MOE, Nanjing 210093, Peoples R China
[3] China Resources Microelect Co Ltd, 14 Liangxi Rd, Wuxi 214061, Peoples R China
来源
SN APPLIED SCIENCES | 2021年 / 3卷 / 06期
基金
中国国家自然科学基金;
关键词
Perovskite nanocomposites; Photostability; Optical properties; TUNABLE PHOTOLUMINESCENCE; THERMAL-STABILITY; CSPBX3; X; BR;
D O I
10.1007/s42452-021-04648-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The poor stability of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals is the most impediment to its application in the field of photoelectrics. In this work, monodisperse CsPbBr3/TiO2 nanocrystals are successfully prepared by coating titanium precursor on the surface of colloidal CsPbBr3 nanocrystals at room temperature. The CsPbBr3/TiO2 nanocomposites exhibit excellent stability, remaining the identical particle size (9.2 nm), crystal structures and optical properties. Time-resolved photoluminescence decay shows that the lifetime of CsPbBr3/TiO2 nanocrystals is about 4.04 ns and keeps great stability after lasting two months in the air. Results show that the coating of TiO2 on CsPbBr3 NCs greatly suppressed the anion exchange and photodegradation, which are the main reasons for dramatically improving their chemical stability and photostability. The results provide an effective method to solve the stability problem of perovskite nanostructures and are expected to have a promising application in optoelectronic fields
引用
收藏
页数:7
相关论文
共 27 条
[1]   High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer [J].
Abbas, Hisham A. ;
Kottokkaran, Ranjith ;
Ganapathy, Balaji ;
Samiee, Mehran ;
Zhang, Liang ;
Kitahara, Andrew ;
Noack, Max ;
Dalal, Vikram L. .
APL MATERIALS, 2015, 3 (01)
[2]   Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4% [J].
Bian, Hui ;
Bai, Dongliang ;
Jin, Zhiwen ;
Wang, Kang ;
Liang, Lei ;
Wang, Haoran ;
Zhang, Jingru ;
Wang, Qian ;
Liu, Shengzhong .
JOULE, 2018, 2 (08) :1500-1510
[3]  
Chen DQ, 2018, J MATER CHEM C, V6, P6832, DOI [10.1039/c8tc02407c, 10.1039/C8TC02407C]
[4]   Highly luminescent CsPbX3 (X=Cl, Br, I) perovskite nanocrystals with tunable photoluminescence properties [J].
Chen, Haitao ;
Guo, Anqi ;
Gu, Xieyang ;
Feng, Min .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 789 :392-399
[5]   Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research [J].
Chen, Haitao ;
Guo, Anqi ;
Zhu, Jun ;
Cheng, Liwen ;
Wang, Qiang .
APPLIED SURFACE SCIENCE, 2019, 465 :656-664
[6]   Defect-related energy structures of AlN nanotips probed by photoluminescence [J].
Chen, Haitao ;
Chen, Guoshuai ;
Zhou, Xuming ;
Zhu, Wenming ;
Chen, Xiaobing ;
Zeng, Xianghua .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (50)
[7]   Co-Solvent Controllable Engineering of MA0.5FA0.5Pb0.8Sn0.2I3 Lead-Tin Mixed Perovskites for Inverted Perovskite Solar Cells with Improved Stability [J].
Chen, Lung-Chien ;
Tien, Ching-Ho ;
Jhou, Yang-Cheng ;
Lin, Wei-Cheng .
ENERGIES, 2020, 13 (10)
[8]   Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3/ZnS Quantum Dot Heterostructure [J].
Chen, Weiwei ;
Hao, Jiongyue ;
Hu, Wei ;
Zang, Zhigang ;
Tang, Xiaosheng ;
Fang, Liang ;
Niu, Tianchao ;
Zhou, Miao .
SMALL, 2017, 13 (21)
[9]   Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting [J].
Gao, Linjie ;
Li, Yaguang ;
Ren, Jiabin ;
Wang, Shufang ;
Wang, Ruining ;
Fu, Guangsheng ;
Hu, Yong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 202 :127-133
[10]   Solar cell efficiency tables (Version 45) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (01) :1-9