Multiple solutions to a magnetic nonlinear Choquard equation

被引:208
作者
Cingolani, Silvia [1 ]
Clapp, Monica [2 ]
Secchi, Simone [3 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2012年 / 63卷 / 02期
关键词
Nonlinear Choquard equation; Nonlocal nonlinearity; Electromagnetic potential; Multiple solutions; Intertwining solutions; SCHRODINGER-NEWTON EQUATIONS; STATE REDUCTION; EXISTENCE; PRINCIPLE; SYSTEMS;
D O I
10.1007/s00033-011-0166-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stationary nonlinear magnetic Choquard equation (-i del + A(x))(2)u + V(x)u = (1/|x|(alpha) * |u|(p-2)u, x is an element of R-N where A is a real-valued vector potential, V is a real-valued scalar potential, N >= 3, alpha is an element of (0, N) and 2 - (alpha/N) < p < (2N - alpha)/(N - 2). We assume that both A and V are compatible with the action of some group G of linear isometries of RN. We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition. u(gx) = tau(g)u(x) for all g is an element of G, x is an element of R-N, where tau : G -> S-1 is a given group homomorphism into the unit complex numbers.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 32 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[4]  
[Anonymous], PNLDE
[5]  
Cingolani S., INTERTWINING SEMICLA
[6]   Semi-classical limit for Schrodinger equations with magnetic field and Hartree-type nonlinearities [J].
Cingolani, Silvia ;
Secchi, Simone ;
Squassina, Marco .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :973-1009
[7]   Intertwining semiclassical bound states to a nonlinear magnetic Schrodinger equation [J].
Cingolani, Silvia ;
Clapp, Monica .
NONLINEARITY, 2009, 22 (09) :2309-2331
[8]  
CLAPP M, 1991, J REINE ANGEW MATH, V418, P1
[9]  
Esteban M. J., 1989, PROG NONLIN, V1, P401, DOI DOI 10.1007/978-1-4615-9828-2_18
[10]   BORSUK-ULAM THEOREMS FOR ARBITRARY S1 ACTIONS AND APPLICATIONS [J].
FADELL, ER ;
HUSSEINI, SY ;
RABINOWITZ, PH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) :345-360