Smooth complete toric threefolds with no nontrivial nef line bundles

被引:14
作者
Fujino, O [1 ]
Payne, S
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Aichi 4648602, Japan
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
projectivity; toric geometry;
D O I
10.3792/pjaa.81.174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all of smooth complete toric threefolds of Picard number 5 with no nontrivial nef line bundles, and show that no such examples exist with Picard number less than 5.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 1973, Lecture Notes in Mathematics
[2]   Moishezon manifolds whose Picard group is of rank one [J].
Bonavero, L .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (03) :503-521
[3]   On non projective toric manifolds [J].
Bonavero, L .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (03) :407-431
[4]  
Eikelberg M., 1992, RESULTS MATH, V22, P509, DOI DOI 10.1007/BF03323103
[5]   SPHERICAL COMPLEXES AND NONPROJECTIVE TORIC VARIETIES [J].
EWALD, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (02) :115-122
[6]   On the Kleiman-Mori cone [J].
Fujino, O .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (05) :80-84
[7]  
Fulton W., 1993, ANN MATH STUD, V131
[8]   SMOOTH TORIC VARIETIES WITH SMALL PICARD NUMBER ARE PROJECTIVE [J].
KLEINSCHMIDT, P ;
STURMFELS, B .
TOPOLOGY, 1991, 30 (02) :289-299
[9]  
Kollar J., 1990, SURVEYS DIFFERENTIAL, P113, DOI DOI 10.1215/00127094-3450859
[10]  
NAGAYA O, 1976, THESIS NAGOYA U