Differential regulation of Cdc2 and Cdk2 by RINGO and Cyclins

被引:72
作者
Karaiskou, A
Perez, LH
Ferby, I
Ozon, R
Jessus, C
Nebreda, AR
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
[2] Univ Paris 06, ESA 7080, CNRS, INRA,Lab Physiol Reprod, F-75005 Paris, France
关键词
D O I
10.1074/jbc.M104722200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin-dependent kinases (Cdks) are key regulators of the eukaryotic cell division cycle. Cdk1 (Cdc2) and Cdk2 should be bound to regulatory subunits named cyclins as well as phosphorylated on a conserved Thr located in the T-loop for full enzymatic activity. Cdc2- and Cdk2-cyclin complexes can be inactivated by phosphorylation on the catalytic cleft-located Thr-14 and Tyr-15 residues or by association with inhibitory subunits such as P21(Cip1). We have recently identified a novel Cdc2 regulator named RINGO that plays an important role in the meiotic cell cycle of Xenopus oocytes. RINGO can bind and activate Cdc2 but has no sequence homology to cyclins. Here we report that, in contrast with Cdc2-cyclin complexes, the phosphorylation of Thr-161 is not required for full activation of Cde2 by RINGO. We also show that RINGO can directly stimulate the kinase activity of Cdk2 independently of Thr-160 phosphorylation. Moreover, RINGO-bound Cdc2 and Cdk2 are both less susceptible to inhibition by p21(cip1), whereas the Thr-14/Tyr-15 kinase Myt1 can negatively regulate the activity of Cdc2-RINGO with reduced efficiency. Our results indicate that Cdk-RINGO complexes may be active under conditions in which cyclin-bound Cdks are inhibited and can therefore play different regulatory roles.
引用
收藏
页码:36028 / 36034
页数:7
相关论文
共 50 条
[11]   A novel p34cdc2-binding and activating protein that is necessary and sufficient to trigger G2/M progression in Xenopus oocytes [J].
Ferby, I ;
Blazquez, M ;
Palmer, A ;
Eritja, R ;
Nebreda, AR .
GENES & DEVELOPMENT, 1999, 13 (16) :2177-2189
[12]   THE MO15 GENE ENCODES THE CATALYTIC SUBUNIT OF A PROTEIN-KINASE THAT ACTIVATES CDC2 AND OTHER CYCLIN-DEPENDENT KINASES (CDKS) THROUGH PHOSPHORYLATION OF THR161 AND ITS HOMOLOGS [J].
FESQUET, D ;
LABBE, JC ;
DERANCOURT, J ;
CAPONY, JP ;
GALAS, S ;
GIRARD, F ;
LORCA, T ;
SHUTTLEWORTH, J ;
DOREE, M ;
CAVADORE, JC .
EMBO JOURNAL, 1993, 12 (08) :3111-3121
[13]   A NOVEL CYCLIN ASSOCIATES WITH MO15/CDK7 TO FORM THE CDK-ACTIVATING KINASE [J].
FISHER, RP ;
MORGAN, DO .
CELL, 1994, 78 (04) :713-724
[14]   Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase [J].
Furuno, N ;
Ogawa, Y ;
Iwashita, J ;
Nakajo, N ;
Sagata, N .
EMBO JOURNAL, 1997, 16 (13) :3860-3865
[15]   TYROSINE PHOSPHORYLATION OF THE FISSION YEAST CDC2+ PROTEIN-KINASE REGULATES ENTRY INTO MITOSIS [J].
GOULD, KL ;
NURSE, P .
NATURE, 1989, 342 (6245) :39-45
[16]   PHOSPHORYLATION AT THR167 IS REQUIRED FOR SCHIZOSACCHAROMYCES-POMBE P34CDC2 FUNCTION [J].
GOULD, KL ;
MORENO, S ;
OWEN, DJ ;
SAZER, S ;
NURSE, P .
EMBO JOURNAL, 1991, 10 (11) :3297-3309
[17]   CELL-CYCLE REGULATION OF CDK2 ACTIVITY BY PHOSPHORYLATION OF THR160 AND TYR15 [J].
GU, Y ;
ROSENBLATT, J ;
MORGAN, DO .
EMBO JOURNAL, 1992, 11 (11) :3995-4005
[18]   MECHANISM OF CDK ACTIVATION REVEALED BY THE STRUCTURE OF A CYCLINA-CDK2 COMPLEX [J].
JEFFREY, PD ;
RUSO, AA ;
POLYAK, K ;
GIBBS, E ;
HURWITZ, J ;
MASSAGUE, J ;
PAVLETICH, NP .
NATURE, 1995, 376 (6538) :313-320
[19]   Active and inactive protein kinases: Structural basis for regulation [J].
Johnson, LN ;
Noble, MEM ;
Owen, DJ .
CELL, 1996, 85 (02) :149-158
[20]   The Cdk-activating kinase (CAK) from budding yeast [J].
Kaldis, P ;
Sutton, A ;
Solomon, MJ .
CELL, 1996, 86 (04) :553-564