Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle

被引:243
作者
Li, Renyuan [1 ]
Shi, Yusuf [1 ]
Wu, Mengchun [1 ]
Hong, Seunghyun [1 ]
Wang, Peng [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, Water Desalinat & Reuse Ctr, Div Biol & Environm Sci & Engn, Thuwal, Saudi Arabia
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
SOLAR-CELLS; EFFICIENCY; SYSTEMS; MODULE; PERFORMANCE; AIR;
D O I
10.1038/s41893-020-0535-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages. More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75-96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m(-)(2) and lowers the temperature of a photovoltaic panel by at least 10 degrees C under 1.0 kW m(-)(2) solar irradiation in laboratory conditions. It delivered a 13-19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability.
引用
收藏
页码:636 / 643
页数:8
相关论文
共 41 条
[1]   Effect of dust accumulation on the power outputs of solar photovoltaic modules [J].
Adinoyi, Muhammed J. ;
Said, Syed A. M. .
RENEWABLE ENERGY, 2013, 60 :633-636
[2]  
[Anonymous], 2020, UV IND DIURN VAR
[3]  
[Anonymous], 2020, ATL BIOSPH
[4]   Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions [J].
Bahaidarah, H. ;
Subhan, Abdul ;
Gandhidasan, P. ;
Rehman, S. .
ENERGY, 2013, 59 :445-453
[5]   Uniform cooling of photovoltaic panels: A review [J].
Bahaidarah, Haitham M. S. ;
Baloch, Ahmer A. B. ;
Gandhidasan, Palanichamy .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 57 :1520-1544
[6]   Lifetime degradation and regeneration in multicrystalline silicon under illumination at elevated temperature [J].
Bredemeier, Dennis ;
Walter, Dominic ;
Herlufsen, Sandra ;
Schmidt, Jan .
AIP ADVANCES, 2016, 6 (03)
[7]   Review of passive solar heating and cooling technologies [J].
Chan, Hoy-Yen ;
Riffat, Saffa B. ;
Zhu, Jie .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :781-789
[8]   Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems [J].
Chandel, S. S. ;
Agarwal, Tanya .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 :1342-1351
[9]   Effects of passive cooling on performance of silicon photovoltaic cells [J].
Cuce, Erdem ;
Bali, Tulin ;
Sekucoglu, Suphi Anil .
INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2011, 6 (04) :299-308
[10]  
J��ger-Waldau A., 2019, PV STATUS REPORT 201, DOI DOI 10.2760/326629