Synergistic Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma on Bone Regeneration of Calvarial Defects in Rabbits

被引:20
|
作者
Yun, Jeong-Ho [1 ]
Yoo, Jae-Heung [1 ]
Choi, Seong-Ho [2 ]
Lee, Myung-Hyun [3 ]
Lee, Sang-Jin [4 ]
Song, Sun U. [5 ]
Oh, Nam-Sik [1 ]
机构
[1] Inha Univ, Sch Med, Dept Dent, Inchon, South Korea
[2] Yonsei Univ, Res Inst Periodontal Regenerat, Dept Periodontol, Seoul 120749, South Korea
[3] Korea Inst Ceram Engn & Technol, Green Ceram Div, Seoul, South Korea
[4] Mokpo Natl Univ, Dept Adv Mat Sci & Engn, Mokpo, South Korea
[5] Inha Univ, Sch Med, Clin Res Ctr, Inchon, South Korea
关键词
bone regeneration; hydroxyapatite; mesenchymal stem cells; platelet-rich plasma; CRITICAL-SIZE DEFECTS; AUTOGENOUS BONE; SINUS-AUGMENTATION; GROWTH-FACTORS; STROMAL CELLS; MODEL; DIFFERENTIATION; PROLIFERATION; GRAFTS; REPAIR;
D O I
10.1007/s13770-012-0017-5
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Bone tissue regeneration techniques include tissue engineering approaches which employ mesenchymal stem cells as an osteogenic agent for bone repair. Recent studies have demonstrated that tissue engineering scaffolds and growth factors can support cell proliferation, bone formation, and bone tissue repair in lost bone tissue. Furthermore, many studies have suggested that platelet-rich plasma (PRP) can improve bone regeneration due to the numerous growth factors that it contains. This study was performed to investigate the influence of bone marrow-derived mesenchymal stem cells (BMMSCs) and PRP on bone regeneration of calvarial defects in rabbits. Hydroxyapatite (HA) was used as a scaffold for bone regeneration. There were three groups in this experiment: 1) HA loaded with BMMSCs (HS group), 2) HA loaded with PRP (HP group), and 3) HA loaded with BMMSCs and PRP (HSP group). Two circular bony defects (6 mm in diameter) were made in rabbit calvaria using a trephine bur. BMMSCs and PRP with a HA scaffold (diameter 5.5 mm, height 3 mm) were applied to each defect. The animals were sacrificed after 2 weeks, 4 weeks and 8 weeks. The level of their ability of osteogenesis was evaluated through histological and histomorphometric analyses. High-quality bone regeneration was observed in the HSP group. The percentage of new bone area around the scaffolds was higher in the HSP group than it was in the other groups (HS and HP group), especially at 8 weeks (HS, 72.5 +/- 15%; HP, 85.8 +/- 14%; HSP, 98.8 +/- 2.5%). In addition, the level of bone maturation was higher in the HSP group than in the other groups. The results of this study show that PRP has a positive effect on bone generation. HA with a combination of BMMSCs and PRP can enhance bone regeneration. In addition, the growth factor capacity of PRP may affect the differentiation of BMMSCs and promote bone formation.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [31] Adipose-derived stem cells incorporated into platelet-rich plasma improved bone regeneration and maturation in vivo
    Cabral Cruz, Ariadne Cristiane
    Caon, Thiago
    Menin, Alvaro
    Granato, Rodrigo
    Boabaid, Fernanda
    Oliveira Simoes, Claudia Maria
    DENTAL TRAUMATOLOGY, 2015, 31 (01) : 42 - 48
  • [32] Bone Regeneration with Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Bone Graft Materials
    Lee, Ji-Eun
    Heo, Seong-Joo
    Koak, Jai-Young
    Kim, Seong-Kyun
    Han, Chong-Hyun
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2012, 27 (06) : 1389 - 1399
  • [33] Therapeutic effect of platelet-rich plasma on glucocorticoid-induced rat bone marrow mesenchymal stem cells in vitro
    Wang, Yanxue
    Luan, Shuo
    Yuan, Ze
    Lin, Caina
    Fan, Shengnuo
    Wang, Shaoling
    Ma, Chao
    Wu, Shaoling
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [34] Differential effect of platelet-rich plasma and fetal calf serum on bone marrow-derived human mesenchymal stromal cells expanded in vitro
    Goedecke, Anja
    Wobus, Manja
    Krech, Mathias
    Muench, Nadine
    Richter, Katja
    Hoelig, Kristina
    Bornhauser, Martin
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2011, 5 (08) : 648 - 654
  • [35] Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis
    Doyle, Emily Claire
    Wragg, Nicholas Martin
    Wilson, Samantha Louise
    KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2020, 28 (12) : 3827 - 3842
  • [36] Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats' critical-sized mandibular defects
    Awadeen, Muhammad A.
    Al-Belasy, Fouad A.
    Ameen, Laila E.
    Helal, Mohamad E.
    Grawish, Mohammed E.
    WORLD JOURNAL OF STEM CELLS, 2020, 12 (01): : 55 - 69
  • [38] Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma
    Qiu, Gengtao
    Shi, Zhanjun
    Xu, Hockin H. K.
    Yang, Bo
    Weir, Michael D.
    Li, Guangjun
    Song, Yang
    Wang, Jixing
    Hu, Kevin
    Wang, Ping
    Zhao, Liang
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (02) : E937 - E948
  • [39] Bone marrow-derived mesenchymal stromal cells and platelet-rich plasma on a collagen matrix to improve fascial healing
    Heffner, J. J.
    Holmes, J. W.
    Ferrari, J. P.
    Krontiris-Litowitz, J.
    Marie, H.
    Fagan, D. L.
    Perko, J. C.
    Dorion, H. A.
    HERNIA, 2012, 16 (06) : 677 - 687
  • [40] Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids
    Suenaga, Hideyuki
    Furukawa, Katsuko S.
    Suzuki, Yukako
    Takato, Tsuyoshi
    Ushida, Takashi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2015, 26 (11)