Convergence analysis for a higher order scheme for the time-dependent Navier-Stokes equations

被引:3
作者
Wang, Kun [1 ,2 ]
He, Yinnian [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Ctr Computat Geosci, Xian 710049, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
Navier-Stokes equations; Third-order scheme; Temporal discrete scheme; Convergence condition; FINITE-ELEMENT; ERROR ANALYSIS; APPROXIMATION; ACCURATE;
D O I
10.1016/j.amc.2012.01.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a third-order fully discrete scheme for the time-dependent Navier-Stokes equations. We prove that the third-order temporal discrete scheme proposed by Baker et al. in [1] is convergent under a weaker condition. Some numerical experiments are shown to confirm the efficiency of the higher order scheme. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:8269 / 8278
页数:10
相关论文
共 19 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1987, FINITE ELEMENT METHO
[3]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[4]   SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION [J].
BRAMBLE, JH ;
XU, JC .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :463-476
[5]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[6]   Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers [J].
Erturk, E ;
Corke, TC ;
Gökçöl, C .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 48 (07) :747-774
[7]  
He Y., 1996, NUMER METHODS PARTIA, V12, P283, DOI DOI 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO
[8]  
2-K
[9]  
He Y.N., 2007, MATH COMPUT, V76, P115
[10]   The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data [J].
He, Yinnian .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :2097-2124