MiR-208a-3p aggravates autophagy through the PDCD4-ATG5 pathway in Ang II-induced H9c2 cardiomyoblasts

被引:22
作者
Wang, Li [1 ]
Ye, Nan [1 ]
Lian, Xiaoyu [1 ]
Peng, Fei [1 ]
Zhang, Hexi [1 ]
Gong, Hui [1 ]
机构
[1] Fudan Univ, Dept Cardiol, Jinshan Hosp, 1508 Longhang Rd, Shanghai 201508, Peoples R China
关键词
Hypertrophy; miR-208a-3p; Autophagy; PDCD4; ATG5; CARDIAC-HYPERTROPHY; CARDIOMYOCYTE AUTOPHAGY; PRESSURE-OVERLOAD; HEART-FAILURE; INHIBITION; MECHANISMS; EXPRESSION; STRESS; TRANSLATION; DEGRADATION;
D O I
10.1016/j.biopha.2017.12.019
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Pathological cardiac hypertrophy is the main determinant of the development of heart failure, for which there is often no effective therapy. The dysregulation of autophagy is implicated in hypertrophy, but the mechanism linking these processes is unclear. In this study, we characterized the regulatory role of miR-208a-3p in autophagy in H9c2 cardiomyoblasts induced by Angiotensin II (Ang II). We found that miR-208a-3p was up-regulated in Ang II-induced H9c2 cardiomyoblasts and in starvation-induced autophagy. The overexpression of miR-208a-3p increased Ang II-induced autophagy, and this was accompanied by the inhibition of programmed cell death protein (PDCD4) and upregulation of autophagy protein 5 (ATG5). A dual-luciferase report assay confirmed the direct binding between miR-208a-3p and PDCD4. PDCD4 knockdown up-regulated autophagy, and its overexpression down-regulated this process. Moreover, the PDCD4-mediated regulation of autophagy was modulated by ATG5. Taken together, these findings indicate that miR-208a-3p promotes autophagy during Ang II-induced hypertrophy and provide a basis for the development of therapies for hypertrophic-induced cardiac dysfunction.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 31 条
  • [1] Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21
    Banjo, Toshihiro
    Grajcarek, Janin
    Yoshino, Daisuke
    Osada, Hideto
    Miyasaka, Kota Y.
    Kida, Yasuyuki S.
    Ueki, Yosuke
    Nagayama, Kazuaki
    Kawakami, Koichi
    Matsumoto, Takeo
    Sato, Masaaki
    Ogura, Toshihiko
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [2] Molecular regulation of cardiac hypertrophy
    Barry, Sean P.
    Davidson, Sean M.
    Townsend, Paul A.
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2008, 40 (10) : 2023 - 2039
  • [3] MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
    Callis, Thomas E.
    Pandya, Kumar
    Seok, Hee Young
    Tang, Ru-Hang
    Tatsuguchi, Mariko
    Huang, Zhan-Peng
    Chen, Jian-Fu
    Deng, Zhongliang
    Gunn, Bronwyn
    Shumate, Janelle
    Willis, Monte S.
    Selzman, Craig H.
    Wang, Da-Zhi
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (09) : 2772 - 2786
  • [4] Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy
    Cao, Dian J.
    Wang, Zhao V.
    Battiprolu, Pavan K.
    Jiang, Nan
    Morales, Cyndi R.
    Kong, Yongli
    Rothermel, Beverly A.
    Gillette, Thomas G.
    Hill, Joseph A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (10) : 4123 - 4128
  • [5] HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling
    Demos-Davies, Kimberly M.
    Ferguson, Bradley S.
    Cavasin, Maria A.
    Mahaffey, Jennifer H.
    Williams, Sarah M.
    Spiltoir, Jessica I.
    Schuetze, Katherine B.
    Horn, Todd R.
    Chen, Bo
    Ferrara, Claudia
    Scellini, Beatrice
    Piroddi, Nicoletta
    Tesi, Chiara
    Poggesi, Corrado
    Jeong, Mark Y.
    McKinsey, Timothy A.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2014, 307 (02): : H252 - H258
  • [6] S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth
    Dorrello, N. Valerio
    Peschiaroli, Angelo
    Guardavaccaro, Daniele
    Colburn, Nancy H.
    Sherman, Nicholas E.
    Pagano, Michele
    [J]. SCIENCE, 2006, 314 (5798) : 467 - 471
  • [7] Mitochondrial turnover in the heart
    Gottlieb, Roberta A.
    Gustafsson, Asa B.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2011, 1813 (07): : 1295 - 1301
  • [8] Mechanisms of disease: Cardiac plasticity
    Hill, Joseph A.
    Olson, Eric N.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (13) : 1370 - 1380
  • [9] miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation
    Li, Z.
    Song, Y.
    Liu, L.
    Hou, N.
    An, X.
    Zhan, D.
    Li, Y.
    Zhou, L.
    Li, P.
    Yu, L.
    Xia, J.
    Zhang, Y.
    Wang, J.
    Yang, X.
    [J]. CELL DEATH AND DIFFERENTIATION, 2017, 24 (07) : 1205 - 1213
  • [10] Mas receptor mediates cardioprotection of angiotensin-(1-7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress
    Lin, Li
    Liu, Xuebo
    Xu, Jianfeng
    Weng, Liqing
    Ren, Jun
    Ge, Junbo
    Zou, Yunzeng
    [J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2016, 20 (01) : 48 - 57