2D Instantaneous Frequency-based Method for Motion Estimation using Total Variation

被引:0
作者
Murray, Victor [1 ,2 ]
Rodriguez, Paul [2 ,3 ]
Pattichis, Marios S. [2 ]
机构
[1] Univ Ingn & Tecnol, Dept Elect Engn, Lima 43, Peru
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[3] Pontificia Univ Catolica Peru, Dept Elect Engn, Lima 32, Peru
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
motion estimation; optical flow; amplitude-modulation frequency-modulation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a first approach to a new method to compute the motion estimation in digital videos using the two-dimensional instantaneous frequency information computed using amplitude-modulation frequency-modulation (AMFM) methods. The optical flow vectors are computed using an iteratively reweighted norm for total variation (IRN-TV) algorithm. We compare the proposed method using synthetic videos versus a previous three-dimensional AM-FM based method and available motion estimation methods such as a phase-based, Horn-Schunck and the Lucas-Kanade methods. The results are promising producing a full density estimation with more accurate results than the other methods.
引用
收藏
页码:1009 / 1013
页数:5
相关论文
共 50 条
  • [1] 2D Amplitude-Modulation Frequency-Modulation - based Method for Motion Estimation
    Murray, Victor
    Rodriguez, Paul
    Noriega, Maria
    Dasso, Alvaro
    Pattichis, Marios S.
    2015 IEEE 6TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2015,
  • [2] A 2D Amplitude-Modulation Frequency-Modulation Representation For Motion Estimation
    Murray, Victor
    Dasso, Alvaro
    Llanos, Juan
    Rodriguez, Paul
    Pattichis, Marios S.
    PROCEEDINGS OF THE 2016 IEEE ANDESCON, 2016,
  • [3] A direct frequency-based phase algorithm for motion estimation
    Boughazi, M.
    Boulebtateche, B.
    Fezari, M.
    Zouaoui, L.
    Bonnet, N.
    INTELLIGENT SYSTEMS AND AUTOMATION, 2008, 1019 : 243 - +
  • [4] Head Motion Classification with 2D Motion Estimation
    Baytas, Inci M.
    Gunsel, Bilge
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 325 - 328
  • [5] Adaptive multi-stage 2D image motion field estimation
    Neumann, U
    You, SY
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXI, 1998, 3460 : 116 - 123
  • [6] A deep learning phase-based solution in 2D echocardiography motion estimation
    Khoubani, Sahar
    Moradi, Mohammad Hassan
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (04) : 1691 - 1703
  • [7] ATMOSPHERIC MOTION VECTOR RETRIEVAL USING THE TOTAL VARIATION-BASED OPTICAL FLOW METHOD
    Yanovsky, Igor
    Posselt, Derek
    Wu, Longtao
    Hristova-Veleva, Svetla
    Nguyen, Hai
    Lambrigtsen, Bjorn
    Zeng, Xubin
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3780 - 3783
  • [8] Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion
    Pohl, Petr
    Sirotenko, Michael
    Tolstaya, Ekaterina
    Bucha, Victor
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XII, 2014, 9019
  • [10] PCA EVENT-BASED OPTICAL FLOW: A FAST AND ACCURATE 2D MOTION ESTIMATION
    Khairallah, Mahmoud Z.
    Bonardi, Fabien
    Roussel, David
    Bouchafa, Samia
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3521 - 3525