Orthogonal polynomials and tolerancing

被引:1
作者
Rogers, John R. [1 ]
机构
[1] Synopsys Inc, Pasadena, CA 91107 USA
来源
OPTICAL SYSTEM ALIGNMENT, TOLERANCING, AND VERIFICATION V | 2011年 / 8131卷
关键词
Orthogonality; tolerance analysis; polynomials;
D O I
10.1117/12.896109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Previous papers have established the inadvisability of applying tolerances directly to power-series aspheric coefficients. The basic reason is that the individual terms are far from orthogonal. Zernike surfaces and the new Forbes surface types have certain orthogonality properties over the circle described by the "normalization radius." However, at surfaces away from the stop, the optical beam is smaller than the surface, and the polynomials are not orthogonal over the area sampled by the beam. In this paper, we investigate the breakdown of orthogonality as the surface moves away from the aperture stop, and the implications of this to tolerancing.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems [J].
Ariznabarreta, Gerardo ;
Manas, Manuel .
ADVANCES IN MATHEMATICS, 2014, 264 :396-463
[42]   Asymptotic properties of zeros of orthogonal trigonometric polynomials of half-integer orders [J].
Badkov, V. M. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02) :54-70
[43]   Assessing zoom lenses for manufacturability and tolerancing [J].
Youngworth, Richard N. ;
Yamanashi, Takanori ;
Herman, Eric .
ZOOM LENSES VI, 2019, 11106
[44]   Deploying Geometric Dimensioning and Tolerancing in Construction [J].
Talebi, Saeed ;
Koskela, Lauri ;
Tzortzopoulos, Patricia ;
Kagioglou, Michail ;
Krulikowski, Alex .
BUILDINGS, 2020, 10 (04)
[45]   Higher-Order Three-Term Recurrences and Asymptotics of Multiple Orthogonal Polynomials [J].
A. I. Aptekarev ;
V. A. Kalyagin ;
E. B. Saff .
Constructive Approximation, 2009, 30 :175-223
[46]   Higher-Order Three-Term Recurrences and Asymptotics of Multiple Orthogonal Polynomials [J].
Aptekarev, A. I. ;
Kalyagin, V. A. ;
Saff, E. B. .
CONSTRUCTIVE APPROXIMATION, 2009, 30 (02) :175-223
[47]   TOLERANCING A SOLID MODEL WITH A KINEMATIC FORMULATION [J].
RIVEST, L ;
FORTIN, C ;
MOREL, C .
COMPUTER-AIDED DESIGN, 1994, 26 (06) :465-476
[48]   Optical Design and Tolerancing of an Ophthalmological System [J].
Sieber, Ingo ;
Martin, Thomas ;
Yi, Allen ;
Li, Likai ;
Rueenach, Olaf .
OPTICAL SYSTEM ALIGNMENT, TOLERANCING, AND VERIFICATION VIII, 2014, 9195
[49]   Structure-preserved MOR method for coupled systems via orthogonal polynomials and Arnoldi algorithm [J].
Qi, Zhen-Zhong ;
Jiang, Yao-Lin ;
Xiao, Zhi-Hua .
IET CIRCUITS DEVICES & SYSTEMS, 2019, 13 (06) :879-887
[50]   Model reduction in geometric tolerancing by polytopes [J].
Delos, Vincent ;
Arroyave-Tobon, Santiago ;
Teissandier, Denis .
COMPUTER-AIDED DESIGN, 2018, 100 :69-78