Orthogonal polynomials and tolerancing

被引:1
作者
Rogers, John R. [1 ]
机构
[1] Synopsys Inc, Pasadena, CA 91107 USA
来源
OPTICAL SYSTEM ALIGNMENT, TOLERANCING, AND VERIFICATION V | 2011年 / 8131卷
关键词
Orthogonality; tolerance analysis; polynomials;
D O I
10.1117/12.896109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Previous papers have established the inadvisability of applying tolerances directly to power-series aspheric coefficients. The basic reason is that the individual terms are far from orthogonal. Zernike surfaces and the new Forbes surface types have certain orthogonality properties over the circle described by the "normalization radius." However, at surfaces away from the stop, the optical beam is smaller than the surface, and the polynomials are not orthogonal over the area sampled by the beam. In this paper, we investigate the breakdown of orthogonality as the surface moves away from the aperture stop, and the implications of this to tolerancing.
引用
收藏
页数:13
相关论文
共 50 条
[31]   An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials [J].
H. Hiemann ;
D. Schmidt ;
U. Maas .
Journal of Engineering Mathematics, 1997, 31 :131-142
[32]   Asymptotic distribution of the zeros of recursively defined non-orthogonal polynomials [J].
Heim, Bernhard ;
Neuhauser, Markus .
JOURNAL OF APPROXIMATION THEORY, 2022, 275
[33]   q-Classical Orthogonal Polynomials: A General Difference Calculus Approach [J].
R. S. Costas-Santos ;
F. Marcellán .
Acta Applicandae Mathematicae, 2010, 111 :107-128
[34]   Asymptotic behavior of orthogonal trigonometric polynomials of semi-integer degree [J].
Cvetkovic, Aleksandar S. ;
Stanic, Marija P. ;
Marjanovic, Zvezdan M. ;
Tomovic, Tatjana V. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11528-11533
[35]   Automorphisms of the Heisenberg-Weyl algebra and d-orthogonal polynomials [J].
Vinet, Luc ;
Zhedanov, Alexei .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
[36]   Moment Functional and Orthogonal Trigonometric Polynomials of Semi-Integer Degree [J].
Milovanovic, G. V. ;
Cvetkovic, A. S. ;
Stanic, M. P. .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (05) :907-922
[37]   An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials [J].
Niemann, H ;
Schmidt, D ;
Maas, U .
JOURNAL OF ENGINEERING MATHEMATICS, 1997, 31 (2-3) :131-142
[38]   A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces [J].
Vignat, C. ;
Lamberti, P. W. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[39]   Stability of ratio asymptotics of orthogonal polynomials under some class of measure perturbations [J].
Kononova A.A. .
Acta Scientiarum Mathematicarum, 2015, 81 (1-2) :133-143
[40]   On some perturbed q-Laguerre–Hahn orthogonal q-polynomials [J].
S. Jbeli ;
L. Khériji .
Periodica Mathematica Hungarica, 2023, 86 :115-138