Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals

被引:74
|
作者
O'Leary, Michael F. N.
Vainshtein, Anna
Carter, Heather N.
Zhang, Yuan
Hood, David A. [1 ]
机构
[1] York Univ, Sch Kinesiol & Hlth Sci, Toronto, ON M3J 1P3, Canada
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2012年 / 303卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
reactive oxygen species; muscle atrophy; mitochondria; mitophagy; CHRONIC CONTRACTILE ACTIVITY; OXIDATIVE STRESS; PATHWAYS; MECHANISMS; EXPRESSION; DISEASE;
D O I
10.1152/ajpcell.00451.2011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
O'Leary MFN, Vainshtein A, Carter HN, Zhang Y, Hood DA. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Cell Physiol 303: C447-C454, 2012. First published June 6, 2012; doi:10.1152/ajpcell.00451.2011.- Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. The purpose of this study was to determine whether denervation-induced muscle disuse would result in the activation of autophagy gene expression in both wild-type (WT) and Bax/Bak double knockout (DKO) animals, which display an attenuated apoptotic response. Denervation caused a reduction in muscle mass for WT and DKO animals; however, there was a 40% attenuation in muscle atrophy in DKO animals. Mitochondrial state 3 respiration was significantly reduced, and reactive oxygen species production was increased by two- to threefold in both WT and DKO animals. Apoptotic markers, including cytosolic AIF and DNA fragmentation, were elevated in WT, but not in DKO animals following denervation. Autophagy proteins including LC3II, ULK1, ATG7, p62, and Beclin1 were increased similarly following denervation for both WT and DKO. Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.
引用
收藏
页码:C447 / C454
页数:8
相关论文
共 50 条
  • [1] Effect of denervation-induced muscle disuse on mitochondrial protein import
    Singh, Kaustabh
    Hood, David A.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2011, 300 (01): : C138 - C145
  • [2] PGC-1α modulates denervation-induced mitophagy in skeletal muscle
    Vainshtein, Anna
    Desjardins, Eric M. A.
    Armani, Andrea
    Sandri, Marco
    Hood, David A.
    SKELETAL MUSCLE, 2015, 5
  • [3] Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production
    Muller, Florian L.
    Song, Wook
    Jang, Youngmok C.
    Liu, Yuhong
    Sabia, Marian
    Richardson, Arlan
    Van Remmen, Holly
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2007, 293 (03) : R1159 - R1168
  • [4] Denervation-induced oxidative stress and autophagy signaling in muscle
    O'Leary, Michael F. N.
    Hood, David A.
    AUTOPHAGY, 2009, 5 (02) : 230 - 231
  • [5] Time-dependent changes in autophagy, mitophagy and lysosomes in skeletal muscle during denervation-induced disuse
    Triolo, Matthew
    Slavin, Mikhaela
    Moradi, Neushaw
    Hood, David A.
    JOURNAL OF PHYSIOLOGY-LONDON, 2022, 600 (07): : 1683 - 1701
  • [6] PGC-1α modulates denervation-induced mitophagy in skeletal muscle
    Anna Vainshtein
    Eric MA Desjardins
    Andrea Armani
    Marco Sandri
    David A Hood
    Skeletal Muscle, 5
  • [7] Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy
    Lang, Franziska
    Aravamudhan, Sriram
    Nolte, Hendrik
    Tuerk, Clara
    Hoelper, Soraya
    Mueller, Stefan
    Guenther, Stefan
    Blaauw, Bert
    Braun, Thomas
    Krueger, Marcus
    DISEASE MODELS & MECHANISMS, 2017, 10 (07) : 881 - 896
  • [8] Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians
    Spendiff, Sally
    Vuda, Madhusudanarao
    Gouspillou, Gilles
    Aare, Sudhakar
    Perez, Anna
    Morais, Jose A.
    Jagoe, Robert T.
    Filion, Marie-Eve
    Glicksman, Robin
    Kapchinsky, Sophia
    MacMillan, Norah J.
    Pion, Charlotte H.
    Aubertin-Leheudre, Mylene
    Hettwer, Stefan
    Correa, Jose A.
    Taivassalo, Tanja
    Hepple, Russell T.
    JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (24): : 7361 - 7379
  • [9] Denervation-induced muscle atrophy - saved by the lysosomes
    Frank, Emma
    JOURNAL OF PHYSIOLOGY-LONDON, 2022, 600 (14): : 3217 - 3218
  • [10] p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse
    Memme, Jonathan M.
    Oliveira, Ashley N.
    Hood, David A.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (02)