On p-measures of asymmetry for convex bodies

被引:20
作者
Guo, Qi [1 ]
机构
[1] Suzhou Univ Sci & Technol, Dept Math, Suzhou 215009, Jiangsu, Peoples R China
关键词
Measure of asymmetry (symmetry); convex bodies; mixed volume; SYMMETRY; POLYHEDRA; STABILITY;
D O I
10.1515/ADVGEOM.2011.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the p-measures of asymmetry for convex bodies, which have the well-known Minkowski measure of asymmetry as a special case, are defined, and some properties of the p-measures are studied.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 25 条
[11]  
Groemer H., 2001, BEITR ALGEBRA GEOM, V42, P517
[12]  
Gruber P.M., 1993, HDB CONVEX GEOMETRY, VB
[13]  
Grunbaum B., 1963, Proc. Symp. Pure Math., V7, P233
[14]   On asymmetry of some convex bodies [J].
Guo, Q ;
Kaijser, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (02) :239-247
[15]   Stability of the Minkowski measure of asymmetry for convex bodies [J].
Guo, Q .
DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (02) :351-362
[16]  
Guo Q., 1999, NE MATH J, V15, P323
[17]   THE CRITICAL SET OF A CONVEX BODY [J].
KLEE, VL .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (01) :178-188
[18]   AN ALMOST-MEASURE OF SYMMETRY [J].
TENNISON, RL .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07) :820-&
[19]  
Tuzikov A. V., 1997, VESTSI AKAD NAVUK BE, V2, P143
[20]  
Tuzikov A. V., 1997, VESTS AKAD NAVUK BEL, P143