Increasing power-law range in avalanche amplitude and energy distributions

被引:13
作者
Navas-Portella, Victor [1 ,2 ,3 ]
Serra, Isabel [1 ]
Corral, Alvaro [1 ,2 ,4 ,5 ]
Vives, Eduard [6 ,7 ]
机构
[1] Ctr Recerca Matemat, Edifici C,Campus Bellaterra, E-08193 Bellaterra, Catalonia, Spain
[2] Barcelona Grad Sch Math, Edifici C,Campus Bellaterra, E-08193 Barcelona, Spain
[3] Univ Barcelona, Fac Math & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain
[4] Complex Sci Hub Vienna, Josefstadter Str 39, A-1080 Vienna, Austria
[5] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[6] Univ Barcelona, Fac Fis, Dept Mat Condensada, Marti Franques 1, E-08028 Barcelona, Catalonia, Spain
[7] Univ Barcelona, Fac Fis, Inst Complex Syst, Barcelona, Catalonia, Spain
关键词
UNIVERSALITY; STATISTICS; DYNAMICS;
D O I
10.1103/PhysRevE.97.022134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach [J].
Iwamatsu, Masao .
PHYSICAL REVIEW E, 2017, 96 (01)
[32]   Electrowetting of power-law fluids in microgrooved channels [J].
Izadi, Reza ;
Moosavi, Ali .
PHYSICS OF FLUIDS, 2020, 32 (07)
[33]   Power-law tails in the distribution of order imbalance [J].
Zhang, Ting ;
Gu, Gao-Feng ;
Xu, Hai-Chuan ;
Xiong, Xiong ;
Chen, Wei ;
Zhou, Wei-Xing .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 483 :201-208
[34]   Bounds of memory strength for power-law series [J].
Guo, Fangjian ;
Yang, Dan ;
Yang, Zimo ;
Zhao, Zhi-Dan ;
Zhou, Tao .
PHYSICAL REVIEW E, 2017, 95 (05) :052314
[35]   Sedimentation and precipitation of nanoparticles in power-law fluids [J].
Zheng, Liancun ;
Li, Botong ;
Lin, Ping ;
Zhang, Xinxin ;
Zhang, Chaoli ;
Zhao, Bin ;
Wang, Tongtong .
MICROFLUIDICS AND NANOFLUIDICS, 2013, 15 (01) :11-18
[36]   Some Combinatorial Problems in Power-Law Graphs [J].
Jiang, Che ;
Xu, Wanyue ;
Zhou, Xiaotian ;
Zhang, Zhongzhi ;
Kan, Haibin .
COMPUTER JOURNAL, 2022, 65 (07) :1679-1691
[37]   Persistence of Locality in Systems with Power-Law Interactions [J].
Gong, Zhe-Xuan ;
Foss-Feig, Michael ;
Michalakis, Spyridon ;
Gorshkov, Alexey V. .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[38]   Wavy regime of a power-law film flow [J].
Ruyer-Quil, C. ;
Chakraborty, S. ;
Dandapat, B. S. .
JOURNAL OF FLUID MECHANICS, 2012, 692 :220-256
[39]   Resetting of fluctuating interfaces at power-law times [J].
Gupta, Shamik ;
Nagar, Apoorva .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (44)
[40]   Power-law adaptation in the presynaptic vesicle cycle [J].
Mikulasch, Fabian A. ;
Georgiev, Svilen V. ;
Rudelt, Lucas ;
Rizzoli, Silvio O. ;
Priesemann, Viola .
COMMUNICATIONS BIOLOGY, 2025, 8 (01)