Decoupling of Modes for the Elastic Wave Equation in Media of Limited Smoothness
被引:8
作者:
Brytik, Valeriy
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Ctr Computat & Appl Mathememat, W Lafayette, IN 47907 USA
Purdue Univ, Geomath Imaging Grp, W Lafayette, IN 47907 USAUniv Washington, Dept Math, Seattle, WA 98195 USA
Brytik, Valeriy
[2
,3
]
de Hoop, Maarten V.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Ctr Computat & Appl Mathememat, W Lafayette, IN 47907 USA
Purdue Univ, Geomath Imaging Grp, W Lafayette, IN 47907 USAUniv Washington, Dept Math, Seattle, WA 98195 USA
de Hoop, Maarten V.
[2
,3
]
Smith, Hart F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USAUniv Washington, Dept Math, Seattle, WA 98195 USA
Smith, Hart F.
[1
]
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USAUniv Washington, Dept Math, Seattle, WA 98195 USA
Uhlmann, Gunther
[1
]
机构:
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Purdue Univ, Ctr Computat & Appl Mathememat, W Lafayette, IN 47907 USA
[3] Purdue Univ, Geomath Imaging Grp, W Lafayette, IN 47907 USA
We establish a decoupling result for the P and S waves of linear, isotropic elasticity, in the setting of twice-differentiable Lame parameters. Precisely, we show that the P <-> S components of the wave propagation operator are regularizing of order one on L-2 data, by establishing the diagonalization of the elastic system modulo a L-2-bounded operator. Effecting the diagonalization in the setting of twice-differentiable coefficients depends upon the symbol of the conjugation operator having a particular structure.