Orientation-Independent Charge Transport in Single Spherulites from Solution-Processed Organic Semiconductors

被引:43
|
作者
Lee, Stephanie S. [1 ]
Loth, Marsha A. [2 ]
Anthony, John E. [2 ]
Loo, Yueh-Lin [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; TRIETHYLSILYLETHYNYL ANTHRADITHIOPHENE; CRYSTALS; PENTACENE; CRYSTALLIZATION; FABRICATION; ANISOTROPY; MOBILITY; CONTACT;
D O I
10.1021/ja2116316
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the rapidity of morphological development during deposition, solution-processed organic semiconductor thin films exist in semicrystalline or polycrystalline states, incorporating a high degree of local variations in molecular orientation compared to their single-crystal counterparts. Spherulites, a common crystalline superstructure found in these systems, for example, incorporate a large distribution of molecular orientations about the radial axis to maintain their space-filling growth habit. Here, we aim to determine how this distribution of molecular orientations influences charge transport by fabricating arrays of devices on single spherulites. Given that the orientation distribution that is present about the radial axis mandates the presence of low-angle grain boundaries within single spherulites, we find intra-spherulitic charge transport to be independent of the general direction of pi-stacking; organic field-effect transistors exhibit comparable mobilities regardless of how their channels are oriented with respect to the general pi-stacking direction.
引用
收藏
页码:5436 / 5439
页数:4
相关论文
共 50 条
  • [1] Engineering charge transport by heterostructuring solution-processed semiconductors
    Oleksandr Voznyy
    Brandon R. Sutherland
    Alexander H. Ip
    David Zhitomirsky
    Edward H. Sargent
    Nature Reviews Materials, 2
  • [2] Engineering charge transport by heterostructuring solution-processed semiconductors
    Voznyy, Oleksandr
    Sutherland, Brandon R.
    Ip, Alexander H.
    Zhitomirsky, David
    Sargent, Edward H.
    NATURE REVIEWS MATERIALS, 2017, 2 (06):
  • [3] Charge Transport Dilemma of Solution-Processed Nanomaterials
    Kim, Ji-Young
    Kotov, Nicholas A.
    CHEMISTRY OF MATERIALS, 2014, 26 (01) : 134 - 152
  • [4] Nanoconfining solution-processed organic semiconductors for emerging optoelectronics
    Zhang, Yuze
    Chen, Alina
    Kim, Min-Woo
    Alaei, Aida
    Lee, Stephanie S.
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (17) : 9375 - 9390
  • [5] Field-effect transistors made from solution-processed organic semiconductors
    Brown, AR
    Jarrett, CP
    deLeeuw, DM
    Matters, M
    SYNTHETIC METALS, 1997, 88 (01) : 37 - 55
  • [6] Solution-processed organic spin-charge converter
    Ando, Kazuya
    Watanabe, Shun
    Mooser, Sebastian
    Saitoh, Eiji
    Sirringhaus, Henning
    NATURE MATERIALS, 2013, 12 (07) : 622 - 627
  • [7] Solution-processed organic spin-charge converter
    Ando K.
    Watanabe S.
    Mooser S.
    Saitoh E.
    Sirringhaus H.
    Nature Materials, 2013, 12 (7) : 622 - 627
  • [8] Suppressing crystallization in solution-processed thin films of organic semiconductors
    Jes B. Sherman
    Chien-Yang Chiu
    Ryan Fagenson
    Guang Wu
    Craig J. Hawker
    Michael L. Chabinyc
    MRS Communications, 2015, 5 : 447 - 452
  • [9] Vertically stacked complementary inverters with solution-processed organic semiconductors
    Kim, J. B.
    Fuentes-Hernandez, C.
    Hwang, D. K.
    Tiwari, S. P.
    Potscavage, W. J., Jr.
    Kippelen, B.
    ORGANIC ELECTRONICS, 2011, 12 (07) : 1132 - 1136
  • [10] Suppressing crystallization in solution-processed thin films of organic semiconductors
    Sherman, Jes B.
    Chiu, Chien-Yang
    Fagenson, Ryan
    Wu, Guang
    Hawker, Craig J.
    Chabinyc, Michael L.
    MRS COMMUNICATIONS, 2015, 5 (03) : 447 - 452